Investigation of RT1t49 aptamer binding to human immunodeficiency virus 1 reverse transcriptase

Authors

  • Siriluk Ratanabunyong Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand and Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
  • Maho Yagi-Utsumi Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 12 Okazaki, Aichi 444-8787, Japan
  • Saeko Yanaka Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 12 Okazaki, Aichi 444-8787, Japan
  • Koichi Kato Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 12 Okazaki, Aichi 444-8787, Japan
  • Kiattawee Choowongkomon Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
  • Supa Hannongbua Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand and Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10990, Thailand and Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand

Keywords:

aptamer, HIV-1 RT, human immunodeficiency virus 1, K103N/Y181C, NNRTI, RT1t49, reverse transcriptase

Abstract

HIV is the causative agent of AIDS.  UNAIDS reported in 2020 that 1.7 million people were newly infected with HIV, 38 million people were living with HIV and 690,000 people died of AIDS-related illnesses.  The HIV genome includes essential proteins especially reverse transcriptase (RT) that enables synthesis of the viral DNA, and its integration into the host genome.  The RT1t49 is a DNA aptamer that can inhibit RT.  This study aimed to clarify the activity of RT1t49 on wild-type (WT) and K103N/Y181C double mutant (KY) HIV-1 RTs function and characterize HIV-1 RTs-RT1t49 aptamer complex.  The biophysical characterizations of complexes of RT1t49 with both WT and KY HIV-1 RTs were done by surface plasmon resonance (SPR), isothermal calorimetry (ITC), and nuclear magnetic resonance (NMR).  The RT1t49 aptamer showed IC50 values of 3.39±0.60 and 4.82±0.45 nM on the WT and KY HIV-1 RTs, respectively.  This RT1t49 aptamer bound to the WT and KY HIV-1 RTs with KD values of 52.8±0.22 and 65.8±0.52 nM, respectively, as determined by SPR.  Furthermore, the thermodynamic properties of the complexes were analyzed by ITC.  The results showed a slightly different enthalpy change on the complex of HIV-1 RTs-RT1t49.  Additionally, the spectral changes of the RT1t49-HIV-1 RTs were studied by NMR.  The results showed the RT1t49 effect on M16, M184, M230, and M357 residues at the NNRTI drug binding site.  All of the results displayed the RT1t49 bound to HIV-1 RTs at the NNRTI drug binding site which resulted in suppression of the DNA polymerase function.

References

Aeksiri, N., Warakulwit, C., Hannongbua, S., Unajak, S., & Choowongkomon, K. (2017). Use of Capillary Electrophoresis to Study the Binding Interaction of Aptamers with Wild-Type, K103N, and Double Mutant (K103N/Y181C) HIV-1 RT : Studying the Binding Interaction of Wild-Type, K103N, and Double Mutant (K103N/Y181C) HIV-1 RT with Aptamers by Performing the Capillary Electrophoresis. Appl Biochem Biotechnol, 182(2), 546-558. DOI: 10.1007/s12010-016-2343-x

de Bethune, M. P. (2010). Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989-2009). Antiviral Res, 85(1), 75-90. DOI: 10.1016/j.antiviral.2009.09.008

Ditzler, M. A., Bose, D., Shkriabai, N., Marchand, B., Sarafianos, S. G., Kvaratskhelia, M., & Burke, D. H. (2011). Broad-spectrum aptamer inhibitors of HIV reverse transcriptase closely mimic natural substrates. Nucleic Acids Res, 39(18), 8237-8247. DOI: 10.1093/nar/gkr381

Fanales-Belasio, E., Raimondo, M., Suligoi, B., & Butto, S. (2010). HIV virology and pathogenetic mechanisms of infection: a brief overview. Ann Ist Super Sanita, 46(1), 5-14. DOI: 10.4415/ANN_10_01_02

Fu, H., Guthrie, J. W., & Le, X. C. (2006). Study of binding stoichiometries of the human immunodeficiency virus type 1 reverse transcriptase by capillary electrophoresis and laser-induced fluorescence polarization using aptamers as probes. Electrophoresis, 27(2), 433-441. DOI: 10.1002/elps.200500460

German Advisory Committee Blood, S. A. o. P. T. b. B. (2016). Human Immunodeficiency Virus (HIV). Transfus Med Hemother, 43(3), 203-222. DOI: 10.1159/000445852

Hu, W. S., & Hughes, S. H. (2012). HIV-1 reverse transcription. Cold Spring Harb Perspect Med, 2(10). DOI: 10.1101/cshperspect.a006882

Ibe, S., & Sugiura, W. (2011). Clinical significance of HIV reverse-transcriptase inhibitor-resistance mutations. Future Microbiol, 6(3), 295-315. DOI: 10.2217/fmb.11.7

Kassaw, M. W., Abebe, A. M., Abate, B. B., Tlaye, K. G., & Kassie, A. M. (2020). Mother-to-child HIV transmission and its associations among exposed infants after Option B+ guidelines implementation in the Amhara regional state referral hospitals, Ethiopia. International Journal of Infectious Diseases, 95, 268-275. DOI: 10.1016/j.ijid.2020.03.006

Kissel, J. D., Held, D. M., Hardy, R. W., & Burke, D. H. (2007a). Active site binding and sequence requirements for inhibition of HIV-1 reverse transcriptase by the RT1 family of single-stranded DNA aptamers. Nucleic Acids Res, 35(15), 5039-5050. DOI: 10.1093/nar/gkm420

Kissel, J. D., Held, D. M., Hardy, R. W., & Burke, D. H. (2007b). Single-stranded DNA aptamer RT1t49 inhibits RT polymerase and RNase H functions of HIV type 1, HIV type 2, and SIVCPZ RTs. AIDS Res Hum Retroviruses, 23(5), 699-708. DOI: 10.1089/aid.2006.0262

Nguyen, H. H., Park, J., Kang, S., & Kim, M. (2015). Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel), 15(5), 10481-10510. DOI: 10.3390/s150510481

Nguyen, N., & Holodniy, M. (2008). HIV infection in the elderly. Clin Interv Aging, 3(3), 453-472. DOI: 10.2147/cia.s2086

Oda, M., & Nakamura, H. (2000). Thermodynamic and kinetic analyses for understanding sequence-specific DNA recognition. Genes Cells, 5(5), 319-326. DOI: 10.1046/j.1365-2443.2000.00335.x

Patching, S. G. (2014). Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim Biophys Acta, 1838(1 Pt A), 43-55. DOI: 10.1016/j.bbamem.2013.04.028

Perozzo, R., Folkers, G., & Scapozza, L. (2004). Thermodynamics of protein-ligand interactions: history, presence, and future aspects. J Recept Signal Transduct Res, 24(1-2), 1-52. DOI: 10.1081/rrs-120037896

Sakamoto, T., Ennifar, E., & Nakamura, Y. (2018). Thermodynamic study of aptamers binding to their target proteins. Biochimie, 145, 91-97. DOI: 10.1016/j.biochi.2017.10.010

Sarafianos, S. G., Marchand, B., Das, K., Himmel, D. M., Parniak, M. A., Hughes, S. H., & Arnold, E. (2009). Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol, 385(3), 693-713. DOI: 10.1016/j.jmb.2008.10.071

Schneider, D. J., Feigon, J., Hostomsky, Z., & Gold, L. (1995). High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. Biochemistry, 34(29), 9599-9610.

Shaw, G. M., & Hunter, E. (2012). HIV transmission. Cold Spring Harb Perspect Med, 2(11). DOI: 10.1101/cshperspect.a006965

Silprasit, K., Thammaporn, R., Tecchasakul, S., Hannongbua, S., & Choowongkomon, K. (2011). Simple and rapid determination of the enzyme kinetics of HIV-1 reverse transcriptase and anti-HIV-1 agents by a fluorescence based method. J Virol Methods, 171(2), 381-387. DOI: 10.1016/j.jviromet.2010.12.001

Thammaporn, R., Yagi-Utsumi, M., Yamaguchi, T., Boonsri, P., Saparpakorn, P., Choowongkomon, K., Techasakul, S., Kato, K. & Hannongbua, S. (2015). NMR characterization of HIV-1 reverse transcriptase binding to various non-nucleoside reverse transcriptase inhibitors with different activities. Sci Rep, 5, 15806. DOI: 10.1038/srep15806

Torti, C., Pozniak, A., Nelson, M., Hertogs, K., & Gazzard, B. G. (2001). Distribution of K103N and/or Y181C HIV-1 mutations by exposure to zidovudine and non-nucleoside reverse transcriptase inhibitors. J Antimicrob Chemother, 48(1), 113-116. DOI: 10.1093/jac/48.1.113

Tzeng, S. R., & Kalodimos, C. G. (2012). Protein activity regulation by conformational entropy. Nature, 488(7410), 236-240. DOI: 10.1038/nature11271

UNAIDS. (2020, 9/4/2020). GLOBAL AIDS UPDATE 2020. Retrieved from https://www.unaids.org/en

Wang, Y., Xing, H., Liao, L., Wang, Z., Su, B., Zhao, Q., Feng, Y., Ma, P., Liu, J., Wu, J., Ruan, Y. & Shao, Y. (2014). The development of drug resistance mutations K103N Y181C and G190A in long term Nevirapine-containing antiviral therapy. AIDS Res Ther, 11, 36. DOI: 10.1186/1742-6405-11-36

Weber, J. (2001). The pathogenesis of HIV-1 infection. Br Med Bull, 58, 61-72. DOI: 10.1093/bmb/58.1.61

Downloads

Published

2023-02-14

How to Cite

Ratanabunyong, S. ., Yagi-Utsumi, M. ., Yanaka, S. ., Kato, K. ., Choowongkomon, K. ., & Hannongbua, S. . (2023). Investigation of RT1t49 aptamer binding to human immunodeficiency virus 1 reverse transcriptase. Journal of Current Science and Technology, 11(1), 51–59. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/348

Issue

Section

Research Article