Synthesis and structural characterization of (Na6F(H2O)18[(VO4)2]·2H3O·2HF


  • Chana Panyanon Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathumthani 12121, Thailand
  • Winya Dungkaew Department of Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand
  • Kittipong Chainok Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-McMa), Faculty of Science and Technology, Thammasat University, Pathumthani 12121, Thailand


hexanuclear, hexameric Na6 cluster, oxonium, single crystal to single crystal transformation, sodium cluster, vanadate


A new sodium vanadate solid comprising hexameric Na6 cluster, (Na6F(H2O)18)[(VO4)2]·2H3O·2HF (1), was synthesized for the first time.  Material 1 was characterized by single crystal X-ray diffraction (SC-XRD), powder X-ray diffraction (PXRD), infrared spectroscopy (IR), and thermogravimetric analysis (TGA).  1 crystallizes in the cubic system with space group Fd-3c and the crystal comprises two orthovanadate (VO4) units, one hexameric sodium [Na6F(H2O)18] cluster, two hydrogen fluoride (HF) molecules, and two oxonium (H3O) cations.  In the crystal, the four moieties interact with each other through extensive O−H∙∙∙O and O−H∙∙∙F hydrogen bonding interactions to give rise to a three-dimensional supramolecular architecture.  The discrete structure of 1 can be transformed to an infinite three-dimensional network of β-NaVO3 phase via thermally induced solid-state reactivity.


Akande, A. A., Rammutla, K. E., Moyo, T., Osman, N. S. E., Nkosi, S. S., Jafta, C. J., & Mwakikunga, B. W. (2015). Magnetism variations and susceptibility hysteresis at the metal-insulator phase transition temperature of VO2 in a composite film containing vanadium and tungsten oxides. Journal of Magnetism and Magnetic Materials, 375, 1-9. DOI: 10.1016/J.JMMM.2014.08.099

Bondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. DOI: 10.1021/j100785a001

Bouloux, J. C., Milosevic, I., & Galy, J. (1976). Magnesium hypovanadates MgVO3 and MgV2O5. Crystal structure of MgVO3. Journal of Solid State Chemistry, 16(3-4), 393-398. DOI: 10.1016/0022-4596(76)90056-6

Brown, I. D., & Altermatt, D. (1985). Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244-247. DOI: 10.1107/S0108768185002063

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J., & Taylor, B. (2002). New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallographica, B58(Pt 3 Pt 1), 389-397. DOI: 10.1107/S0108768102003324

Chainok, K., Haller, K. J., Rae, A. D., Willis, A. C., & Williams, I. D. (2011). Investigation of the structure and phase transitions of the polymeric inorganic-organic hybrids: [M(Im)4V2O6]∞; M = Mn, Co, Ni, Im = imidazole. Acta Crystallographica, B67(1), 41-52. DOI: 10.1107/S0108768110042941

Chanthee, S., Saesong, T., Saphu, W., Chainok, K. & Krachodnok, S. (2012). Poly[octakis-(1H-imidazole-κN3)octa-µ-oxido-tetra­oxidodicopper(II)tetravanadate(V)]. Acta Crystallographica, E68, m362-m363. DOI: 10.1107/S1600536812008252

Cong, H., Zhang, H., Yao, B., Yu, W., Zhao, X., Wang, J., & Zhang, G. (2010). ScVO4: Explorations of novel crystalline inorganic optical materials in rare-earth orthovanadate systems. Crystal Growth & Design, 10(10), 4389-4400. DOI: 10.1021/CG1004962

Cotton, F. A., Lewis, G. E., & Mott, G. N. (1983). Dinuclear and polynuclear oxovanadium(IV) compounds. 2. A complicated sodium oxovanadium(IV) trifluoroacetate compound, Na4(VO)2(CF3CO2)8(THF)6(H2O)2. Inorganic Chemistry, 22(12), 1825-1827. DOI: 10.1021/ic00154a027

Gopal, R., & Calvo, C. (1974). Crystal structure of magnesium divanadate, Mg2V2O7. Acta Crystallographica, B30, 2491-2493. DOI: 10.1107/S0567740874007400

Hara, T., Kanai, S., Mori, K., Mizugaki, T., Ebitani, K., Jitsukawa, K., & Kaneda, K. (2006). Highly efficient C−C bond-forming reactions in aqueous media catalyzed by monomeric vanadate species in an apatite framework. The Journal of Organic Chemistry, 71(19), 7455-7462. DOI: 10.1021/JO0614745

Khan, M. I., Chen, Q., Hope, H., Parkin, S., O'Connor, C. J. & Zubieta, J. (1993). Hydrothermal synthesis and characterization of hexavanadium polyoxo alkoxide anion clusters: crystal structures of the vanadium(IV) species Ba[V6O7(OH)3{(OCH2)3CCH3}3]·3H2O and Na2[V6O7{(OCH2)3CCH2CH3}4], of the mixed-valence complex (Me3NH)[VIV5VVO7(OH)3{(OCH2)3CCH3}3], and of the fluoro derivative Na[V6O6F(OH)3{(OCH2)3CCH3}3]·3H2O. Inorganic Chemistry, 32(13), 2929-2937. DOI: 10.1021/ic00065a022

Kato, K., & Takayama, E. (1984). Das Entwässerungsverhalten des Natriummetavanadatdihydrats und die Kristallstruktur des β-Natriummetavanadats. Acta Crystallographica, B40, 102-105. DOI: 10.1107/S0108768184001828

Li, S., Zhang, L., Lu, B., Yan, E., Wang, T., Li, L., Wang, J., Yu, Y., & Mu, Q. (2018). A new polyoxovanadate-based metal-organic framework: synthesis, structure and photo-/electro-catalytic properties. New Journal of Chemistry, 42(9), 7247-7253. DOI: 10.1039/C7NJ05032A

Liu, F.-Q., Kuhn, A., Herbst-Irmer, R., Stalke, D. & Roesky, H. W. (1994). Molecular solids as ligands in organometallic chemistry: [Cp6*Ti6Na7F19·2.5 thf] (Cp* = C5Me5) and [Cp4*Ti4Mg2F12·7thf], links between ionic solids and organometallic compounds. Angewandte Chemie International Edition, 33(5), 555-556. DOI: 10.1002/ANIE.199405551

Macrae, C. P., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., & Wood, P. A. (2020). Mercury 4.0: from visualization to analysis, design and prediction. Journal of Applied Crystallography, 53, 226-235. DOI: 10.1107/S1600576719014092

Mattelaer, F., Geryl, K., Rampelberg, G., Dobbelaere, T., Dendooven, J., & Detavernier, C. (2016). Atomic layer deposition of vanadium oxides for thin-film lithium-ion battery applications. RSC Advances, 6(115), 114658-114665. DOI: 10.1039/C6RA25742A

Millet, P., Satto, C., Sciau, P. & Galy, J. (1998). MgV2O5 and δLixV2O5: a comparative structural investigation. Journal of Solid State Chemistry, 136(1), 56-62. DOI: 10.1006/jssc.1997.7654

Parhi, P., Upreti, S., & Ramanan, A. (2010). Crystallization of calcium vanadate solids from solution: a metathetic route. Crystal Growth & Design, 10(12), 5078-5084. DOI: 10.1021/CG100703H

Shanmugam, M., Ayyaru, S., & Ahn, Y. (2018). Enhanced cathode performance of rGO-V2O5 nanocomposite catalyst for microbial fuel cell application. Dalton Transactions, 47, 16777-16788. DOI: 10.1039/C8DT02445F

Sheldrick, G. M. (2015a). SHELXT − Integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations and Advances, 71(Pt 1), 3-8. DOI: 10.1107/S2053273314026370

Sheldrick, G. M. (2015b). Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3-8. DOI: 10.1107/S2053229614024218

Shreeve, J., Zhang, J., Zhang, J., Imler, G., & Parrish, D. (2019). Sodium and potassium 3,5-dinitro-4-hydropyrazolate: three-dimensional metal–organic frameworks as promising super-heat-resistant explosives. ACS Applied Energy Materials, 2(10), 7628-7634. DOI: 10.1021/acsaem.9b01608

Smith, T. M., Mahne, N., Prosvirin, A., Dunbar, K. R., & Zubieta J. (2013). A tetranuclear oxofluorovanadium(IV) cluster encapsulating a Na(H2O)n+ subunit. Inorganic Chemistry Communications, 33, 1-5. DOI: 10.1016/j.inoche.2013.03.027

Spek, A. L. (2003). Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 36(Pt 1), 7-13. DOI: 10.1107/S0021889802022112

Wang, K., Xu, Q., Ma, P., Zhang, C., Niu, J., & Wang, J. (2018). Polyoxovanadate catalysts for oxidation of 1-phenyl ethanol: from the discrete [V4O12]4− and [V10O28]6− anions, to the anionic [V6O17]n4n− coordination polymer. CrystEngComm, 20, 6273-6279. DOI: 10.1039/C8CE01237G

Wang, O.-M. & Mak, T. C. W. (2000). Novel layer-type triple salts of silver(I), AgCN·AgF·4AgCF3CO2·2L (L = MeCN or H2O) Dedicated to the memory of Professor George Alan Jeffrey (1915-2000). Chemical Communications, 1435-1436. DOI: 10.1039/B003821K

Wanna, W. H., Janmanchi, D., Thiyagarajan, N., Ramu, R., Tsai, Y.-F., Pao, C.-W., & Yu, S. S.-F. (2019). Selective catalytic oxidation of benzene to phenol by vanadium oxide nanorod (Vnr) catalyst in CH3CN using H2O2(aq) and pyrazine-2-carboxylic acid (PCA). New Journal of Chemistry, 43, 17819-17830. DOI: 10.1039/C9NJ02514F

Zavalij, P. Y. & Whittingham, M. S. (1999). Structural chemistry of vanadium oxides with open frameworks. Acta Crystallographica, B55(Pt 5), 627-663. DOI: 10.1107/S0108768199004000




How to Cite

Panyanon, C. ., Dungkaew, W. ., & Chainok, K. (2023). Synthesis and structural characterization of (Na6F(H2O)18[(VO4)2]·2H3O·2HF. Journal of Current Science and Technology, 11(1), 32–39. Retrieved from



Research Article