Quantitative Analysis of Swertiamarin Content from Fagraea fragrans Leaf Extract using HPLC Technique and its Correlation to Antibacterial Activity

Authors

  • Parichart Hongsing School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand & Mae Fah Luang University Hospital, Mae Fah Luang University, Chiang Rai 57100, Thailand
  • Chomlak Kongart Department of Thai Traditional Medicine, Ramkhamhaeng University, Bangkok 10240, Thailand
  • Nida Nuiden Department of Thai Traditional Medicine, Thaksin University, Phatthalung 93210, Thailand
  • Dhammika Leshan Wannigama Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
  • Krittapat Phairoh School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand & Mae Fah Luang University Hospital, Mae Fah Luang University, Chiang Rai 57100, Thailand

DOI:

https://doi.org/10.59796/jcst.V14N2.2024.34

Keywords:

swertiamarin content, antimicrobial activity, herbal medicine, alternative medicine, traditional Thai medicine, secoiridoid glycosides, Fagraea fragrans

Abstract

The rise in drug resistance poses escalating challenges for antibacterial medications, leading to an urgent demand for the exploration and innovation of new antibacterial drugs. Fagraea fragrans Roxb., belonging to the Gentianaceae family, is one of the common herbal medicines which can be found abundantly in Southeast Asia. The secoiridoid glucoside swertiamarin, one of the major compounds in F. fragrans leaf, exhibits antimicrobial effects. To guarantee the medicinal effectiveness of F. fragrans leaves, it is essential to identify a standardized analytical method for quantifying the active compound. In this study, the optimized HPLC method following ICH guideline was validated for the quantitative analysis of swertiamarin content in F. fragrans leaf in terms of linearity (y = 5733.5x - 369.1; R2 = 0.9999), accuracy (93.57-96.39% recovery), precision (0.91% RSD for repeatability precision; 1.19% RSD for intermediate precision), limit of detection (0.73 µg/mL), limit of quantitation (2.23 µg/mL), specificity (peak purity index = 0.999995) and robustness (% RSD <1).The maximum wavelength of swertiamarin was found to be at 238 nm. The amount of swertiamarin content in F. fragrans leaf extract conducted from the validated HPLC method was found to be 0.0259 ± 0.0005 g/100 g crude drug. The leaf extract exhibited antimicrobial activity against clinical isolates of Enterobacter cloacae, Klebsiella pneumonia, and Escherichia coli at 0.125 mg/mL, and Pseudomonas aeruginosa at 0.5, showing minimum inhibitory concentration (MIC) values. Whereas swertiamarin exhibited even lower MIC values. The developed HPLC analysis effectively determines swertiamarin content as a chemical marker to ensure the antimicrobial potential of F. fragrans leaves.

Author Biography

Dhammika Leshan Wannigama, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand

Affiliation of Dhammika Leshan Wannigama5,6,7,8,9,10

5Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan

6 Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand

7 Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

8 School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia

9 Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, United Kingdom

10 Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan

References

Ahamad, J., Amin, S., & Mir, S. R. (2014, 01/01). Development and validation of HPLC-UV method for estimation of swertiamarin in Enicostemma littorale. Journal of Pharmacutical and BioSciences, 1, 9-16.

Alam, P., Mohammad, A., Singh, R., & Shakeel, F. (2009, 01/01). Estimation of Swertiamarin in Enicostemma Littorale and Marketed Formulations Using HPLC-UV Method. Journal of Bioanalysis & Biomedicine, 1(1), 22-27. https://doi.org/10.4172/1948-593X.1000005

Bangprapai, A., Thongphasuk, P., & Songsak, T. (2016). Determination of swertiamarin content by TLC-densitometer in Fagraea fragrans roxb. leaves. Bulletin of Health, Science and Technology, 14(2), 13-18.

Benzie, I. F., & Wachtel-Galor, S. (2011). Herbal Medicine: Biomolecular and Clinical Aspects (2nd edition ed.). New York, US: CRC Press/Taylor & Francis. https://www.ncbi.nlm.nih.gov/books/NBK92773/

Bhandari, P., Kumar, N., Gupta, A. P., Singh, B., & Kaul, V. K. (2006). Micro-LC determination of swertiamarin in Swertia species and bacoside-A in Bacopa monnieri. Chromatographia, 64, 599-602. https://doi.org/10.1365/s10337-006-0065-x

Bibi, H., Ali, I., Sadozai, S. K., & Atta-Ur-Rahman. (2006). Phytochemical studies and antibacterial activity of Centaurium pulchellum Druce. Natural Product Research, 20(10), 896-901. https://doi.org/10.1080/14786410500162047

Bonam, S. R., Wu, Y. S., Tunki, L., Chellian, R., Halmuthur, M. S. K., Muller, S., & Pandy, V. (2018). What has come out from phytomedicines and herbal edibles for the treatment of cancer?. ChemMedChem, 13(18), 1854-1872. https://doi.org/10.1002/cmdc.201800343

Borman, P., & Elder, D. (2017). Q2(R1) Validation of Analytical Procedures. In A. Teasdale, D. Elder, & R. W. Nims (Eds.), ICH Quality Guidelines (pp. 127-166). John Wiley & Sons. https://doi.org/10.1002/9781118971147.ch5

Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infection and Drug Resistance, 12, 3903-3910. https://doi.org/10.2147/idr.S234610

European committee on antimicrobial susceptibility testing. (2016). Clinical Breakpoints. European Committee for Antimicrobial Susceptibility Testing; version 6. Retrieved January 21, 2024 from https://www.eucast.org/eucast_news/news_singleview?tx_ttnews%5Btt_news%5D=158&cHash=3a1c7d557765db30933733dee416aced

European Medicines Agency. (2008). Reflection paper on markers used for quantitative and qualitative analysis of herbal medicinal products and traditional herbal medicinal products Retrieved January 13, 2024 from https://www.ema.europa.eu/en/markers-used-quantitative-and-qualitative-analysis-herbal-medicinal-products-and-traditional-herbal-medicinal-products-scientific-guideline#ema-inpage-item-18944

Gubar, S. M., Materiienko, A. S., Smielova, N. M., Budanova, L. G., & Georgiyants, V. A. (2020). Development of a New Approach for Standardization of the Herb Centaurium erythraea Rafn. by High Performance Liquid Chromatography. Turkish Journal of Pharmaceutical Sciences, 17(6), 593-598. https://doi.org/10.4274/tjps.galenos.2019.71542

Jensen, S., & Schripsema, J. (2002). Chemotaxonomy and pharmacology of Gentianaceae. In L. Struwe & V. A. Albert (Eds.), Gentianaceae systematics and natural history (pp. 573-631). Cambridge , UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511541865.007

Jonville, M. C., Capel, M., Frederich, M., Angenot, L., Dive, G., Faure, R., ... & Ollivier, E. (2008). Fagraldehyde, a secoiridoid isolated from Fagraea fragrans. Journal of Natural Products, 71(12), 2038-2040. https://doi.org/10.1021/np800291d

Jonville, M., Baghdikian, B., Ollivier, E., Angenot, L., Frederich, M., & Legault, J. (2010). Anti-inflammatory potency of the traditionally used antimalarial plant Fagraea fragrans. Planta Medica, 76(12), Article WSI_6. https://doi.org/10.1055/s-0030-1264210

Kamarudin, M. S., & Latiff, A. (2002). Tumbuhan ubatan Malaysia. Pusat Pengurusan Penyelidikan.

Luk-In, S., Chatsuwan, T., Kueakulpattana, N., Rirerm, U., Wannigama, D. L., Plongla, R., ... & Kulwichit, W. (2021). Occurrence of mcr-mediated colistin resistance in Salmonella clinical isolates in Thailand. Scientific Reports, 11(1), Article 14170. https://doi.org/10.1038/s41598-021-93529-6

Madmanang, S., Cheyeng, N., Heembenmad, S., Mahabusarakam, W., Saising, J., Seeger, M., ... & Chakthong, S. (2016). Constituents of Fagraea fragrans with Antimycobacterial Activity in Combination with Erythromycin. Journal of Natural Products, 79(4), 767-774. https://doi.org/10.1021/acs.jnatprod.5b00691

Motley, T. J. (2004). The Ethnobotany of Fagraea Thunb. (Gentianaceae): The Timber of Malesia and the Scent of Polynesia. Economic Botany, 58(3), 396-409. https://doi.org/10.1663/0013-0001(2004)058[0396:TEOFTG]2.0.CO;2

Neamsuvan, O., Kama, A., Salaemae, A., Leesen, S., & Waedueramae, N. (2015). A survey of herbal formulas for skin diseases from Thailand’s three southern border provinces. Journal of Herbal Medicine, 5(4), 190-198. https://doi.org/10.1016/j.hermed.2015.09.004

Niroj, S., Supreet, K., Giri, P. J., & Deepak, R. P. (2022). Phytochemical Screening and Evaluation of Antioxidant and Antibacterial Potential of Selected Species of Gentiana from Nepal Himalaya. Journal of Science and Technology, 21(1), 61-72. https://doi.org/10.3126/njst.v21i1.49913

Perumal, S., Samy, M. G., & Subramanian, D. (2022, 2022/12/01). Effect of novel therapeutic medicine swertiamarin from Enicostema axillare in zebrafish infected with Salmonella typhi. Chemical Biology & Drug Design, 100(6), 1033-1041. https://doi.org/https://doi.org/10.1111/cbdd.14146

Phuengmaung, P., Somparn, P., Panpetch, W., Singkham-In, U., Wannigama, D. L., Chatsuwan, T., & Leelahavanichkul, A. (2020). Coexistence of Pseudomonas aeruginosa With Candida albicans Enhances Biofilm Thickness Through Alginate-Related Extracellular Matrix but Is Attenuated by N-acetyl-l-cysteine. Frontiers in Cellular and Infection Microbiology, 10, 594336-594336. https://doi.org/10.3389/fcimb.2020.594336

Pillai, J. R., Wali, A. F., Al-Azzawi, A. M., Akhter, R., El-Serehy, H. A., & Akbar, I. (2020). Phytochemical analysis and antimicrobial activity of Enicostemma littorale. Journal of King Saud University-Science, 32(8), 3279-3285. https://doi.org/https://doi.org/10.1016/j.jksus.2020.09.011

Pripdeevech, P., & Saansoomchai, J. (2013). Antibacterial Activity and Chemical Composition of Essential Oil and Various Extracts of Fagraea fragrans Roxb. Flowers. Chiang Mai Journal of Science, 40, 214-223.

Rana, V., Dhanani, T., & Kumar, S. (2012). Improved and Rapid HPLC-PDA Method for Identification and Quantification of Swertiamarin in the Aerial Parts of Enicostemma Axillare. Malaysian Journal of Pharmaceutical Sciences, 10 (1), 1-10.

Shein, A. M. S., Wannigama, D. L., Higgins, P. G., Hurst, C., Abe, S., Hongsing, P., ... & Chatsuwan, T. (2021). Novel colistin-EDTA combination for successful eradication of colistin-resistant Klebsiella pneumoniae catheter-related biofilm infections. Scientific Reports, 11(1), 1-13. https://doi.org/10.1038/s41598-021-01052-5

Shein, A. M. S., Wannigama, D. L., Higgins, P. G., Hurst, C., Abe, S., Hongsing, P., ... & Chatsuwan, T. (2022). High prevalence of mgrB-mediated colistin resistance among carbapenem-resistant Klebsiella pneumoniae is associated with biofilm formation, and can be overcome by colistin-EDTA combination therapy. Scientific Reports, 12(1), 1-19. https://doi.org/10.1038/s41598-022-17083-5

Shein, A. M. S., Wannigama, D. L., Hurst, C., Monk, P. N., Amarasiri, M., Badavath, V. N., ... & Abe, S. (2023). Novel intranasal phage-CaEDTA-ceftazidime/avibactam triple combination therapy demonstrates remarkable efficacy in treating Pseudomonas aeruginosa lung infection. Biomedicine & Pharmacotherapy, 168, Article 115793. https://doi.org/https://doi.org/10.1016/j.biopha.2023.115793

Šiler, B., Mišić, D., Nestorović, J., Banjanac, T., Glamočlija, J., Soković, M., & Ćirić, A. (2010). Antibacterial and Antifungal Screening of Centaurium Pulchellum Crude Extracts and Main Secoiridoid Compounds. Natural Product Communications, 5(10), 1525-1530. https://doi.org/10.1177/1934578X1000501001

Srisakul, S., Wannigama, D. L., Higgins, P. G., Hurst, C., Abe, S., Hongsing, P., ... & Chatsuwan, T. (2022). Overcoming addition of phosphoethanolamine to lipid A mediated colistin resistance in Acinetobacter baumannii clinical isolates with colistin–sulbactam combination therapy. Scientific Reports, 12(1), 1-13. https://doi.org/10.1038/s41598-022-15386-1

U.S. Food and Drug Administration. (2018). Guidance for Industry, Bioanalytical Method Validation. U.S. Food and Drug Administration. Retrieved January 14, 2024 from https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry

van der Sluis, W. G. (1985, 1985/09/01). Chemotaxonomical investigations of the generaBlackstonia andCentaurium (Gentianaceae). Plant Systematics and Evolution, 149(3), 253-286. https://doi.org/10.1007/BF00983311

Vishwakarma, S., Rajani, M., Bagul, M., & Goyal, R. (2004). A Rapid Method for the Isolation of Swertiamarin from Enicostemma littorale. Pharmaceutical Biology, 42(6), 400-403. https://doi.org/10.1080/13880200490885095

Wannigama, D. L., Dwivedi, R., & Zahraei-Ramazani, A. (2014). Prevalence and Antibiotic Resistance of Gram-Negative Pathogenic Bacteria Species Isolated from Periplaneta americana and Blattella germanica in Varanasi, India. Journal of Arthropod-Borne Diseases, 8(1), 10-20.

Wannigama, D. L., Hurst, C., Hongsing, P., Pearson, L., Saethang, T., Chantaravisoot, N., Singkham-in, U., Luk-in, S., Storer, R. J., & Chatsuwan, T. (2020, 2020/03/13). A rapid and simple method for routine determination of antibiotic sensitivity to biofilm populations of Pseudomonas aeruginosa. Annals of Clinical Microbiology and Antimicrobials, 19(1), 1-8. https://doi.org/10.1186/s12941-020-00350-6

Wannigama, D. L., Hurst, C., Pearson, L., Saethang, T., Singkham-In, U., Luk-In, S., ... & Chatsuwan, T. Simple fluorometric-based assay of antibiotic effectiveness for Acinetobacter baumannii biofilms. Scientific Reports, 9(1), 1-14. https://doi.org/10.1038/s41598-019-42353-0

Wannigama, D. L., Shein, A. M. S., Hurst, C., Monk, P. N., Hongsing, P., Phattharapornjaroen, P., ... & Abe, S. (2023). Ca-EDTA restores the activity of ceftazidime-avibactam or aztreonam against carbapenemase-producing Klebsiella pneumoniae infections. Iscience, 26(7), 107215. https://doi.org/https://doi.org/10.1016/j.isci.2023.107215

Weinstein, M. P., & Lewis, J. S. (2020). The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: background, organization, functions, and processes. Journal of Clinical Microbiology, 58(3), Article e01864-19 https://doi.org/10.1128/jcm.01864-19

Downloads

Published

2024-05-02

How to Cite

Hongsing, P., Kongart, C., Nuiden, N., Wannigama, D. L. ., & Phairoh, K. . (2024). Quantitative Analysis of Swertiamarin Content from Fagraea fragrans Leaf Extract using HPLC Technique and its Correlation to Antibacterial Activity. Journal of Current Science and Technology, 14(2), Article 34. https://doi.org/10.59796/jcst.V14N2.2024.34