Unusual blood clots with low blood platelets from Covid-19 viral vector vaccines
Keywords:
adenoviral vectors, ChAdOx nCov-19, PF4, vaccine-induced immune thrombotic thrombocytopeniaAbstract
In providing human immunity from the SARS-CoV-2 virus, AstraZeneca’s ChAdOx1 nCov-19 vaccines have been administered in multiple nations around the world. Throughout this literature review, the background behind derivation of this vaccine from chimpanzees to avoid pre-existing human immunity to this adenoviral vector’s mechanism of interactions will be discussed prior to clinical issues this vaccine brings. Arranged in sections, this discussion concerns the adenovector vaccine’s ability to induce both innate and adaptive immunity, featuring the mucosal route of administration’s ability to stimulate tissue-resident memory T cells (TRM), a crucial part of the adaptive immune system. Despite its solid ability to stimulate immunity with high efficiency and efficacy, a surge in female fatalities following administrations of the ChAdOx1 nCov-19 adenovector vaccines have also occurred. Published articles regarding both hypothesised mechanisms as well as recorded incidences of this rare vaccine-induced blood clots, also known as the Thrombosis and Thrombocytopenia Syndrome (TTS), have been discussed. Despite still lacking a causal relationship between AZ administrations in heparin-free patients and TTS incidences, all of these articles have implied the mechanisms inducing this condition arise from an induction of platelet-activating antibodies against PF4. The most plausible arisal of these antibodies is from free DNA molecules within the ChAdOx nCov-19 vaccine. Additionally, TTS draws similarities to autoimmune heparin-induced thrombocytopenia cases, where a platelet count decline also occurs.
References
Abou-Ismail, M. Y., Moser, K. A., Smock, K. J., & Lim, M. Y. (2021). Vaccine-induced thrombotic thrombocytopenia following Ad26.COV2.S vaccine in a man presenting as acute venous thromboembolism. American Journal of Hematology, 96(9), E346-E349. DOI: https://doi.org/10.1002/ajh.26265
Ahluwalia, P., Vaibhav, K., Ahluwalia, M., Mondal, A. K., Sahajpal, N., Rojiani, A. M., & Kolhe, R. (2021). Infection and Immune Memory: Variables in Robust Protection by Vaccines Against SARS-CoV-2. Frontiers in immunology, 12, 1756.
Aladdin, Y., Algahtani, H., & Shirah, B. (2021). Vaccine-Induced Immune Thrombotic Thrombocytopenia with Disseminated Intravascular Coagulation and Death following the ChAdOx1 nCoV-19 Vaccine. Journal of Stroke and Cerebrovascular Diseases, 30(9), 105938. DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105938
Arepally, G. M., & Ortel, T. L. (2021). Vaccine-induced immune thrombotic thrombocytopenia: what we know and do not know. Blood, 138(4), 293-298. DOI: https://doi.org/10.1182/blood.2021012152
Arunkumar, G. A., McMahon, M., Pavot, V., Aramouni, M., Ioannou, A., Lambe, T., . . . Krammer, F. (2019). Vaccination with viral vectors expressing NP, M1 and chimeric hemagglutinin induces broad protection against influenza virus challenge in mice. Vaccine, 37(37), 5567-5577. DOI: https://doi.org/10.1016/j.vaccine.2019.07.095
Astuti, I. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 407-412.
Baraniuk, C. (2021). Covid-19: How the UK vaccine rollout delivered success, so far. bmj, 372.
Capelle, M. A. H., Babich, L., van Deventer-Troost, J. P. E., Salerno, D., Krijgsman, K., Dirmeier, U., . . . Adriaansen, J. (2018). Stability and suitability for storage and distribution of Ad26.ZEBOV/MVA-BN®-Filo heterologous prime-boost Ebola vaccine. European Journal of Pharmaceutics and Biopharmaceutics, 129, 215-221. DOI: https://doi.org/10.1016/j.ejpb.2018.06.001
Cari, L., Fiore, P., Naghavi Alhosseini, M., Sava, G., & Nocentini, G. (2021). Blood clots and bleeding events following BNT162b2 and ChAdOx1 nCoV-19 vaccine: An analysis of European data. J Autoimmun, 122, 102685. DOI: https://doi.org/10.1016/j.jaut.2021.102685
Chan, Y. W., Wong, M. L., Kwok, F. Y., Au, A. K., Leung, E. C., & Chuang, S. K. (2021). The effect of seasonal influenza vaccine on medically-attended influenza and non-influenza respiratory viruses infections at primary care level, Hong Kong SAR, 2017/18 to 2019/20. Vaccine, 39(25), 3372-3378. DOI: https://doi.org/10.1016/j.vaccine.2021.04.059
Cherry, J. D. (2004). The chronology of the 2002–2003 SARS mini pandemic. Paediatric respiratory reviews, 5(4), 262-269.
Cliff-Patel, N., Moncrieff, L., & Ziauddin, V. (2021). Renal Vein Thrombosis and Pulmonary Embolism Secondary to Vaccine-induced Thrombotic Thrombocytopenia (VITT). European Journal of Case Reports in Internal Medicine, 8(7), 002692. DOI: https://doi.org/10.12890/2021_002692
Custers, J., Kim, D., Leyssen, M., Gurwith, M., Tomaka, F., Robertson, J., ... & Brighton Collaboration Viral Vector Vaccines Safety Working Group. (2021). Vaccines based on replication incompetent Ad26 viral vectors: Standardized template with key considerations for a risk/benefit assessment. Vaccine, 39(22), 3081-3101. DOI: https://doi.org/10.1016/j.vaccine.2020.09.018
De Cristofaro, R., & Sanguinetti, M. (2021). Vaccine-induced thrombotic thrombocytopenia, a rare but severe case of friendly fire in the battle against COVID-19 pandemic: what pathogenesis?. European Journal of Internal Medicine, 91, 88-89. DOI: https://doi.org/10.1016/j.ejim.2021.06.020
De Soto, J. A., & DSSc, F. A. I. C. (2020). Evaluation of the Moderna, Pfizer/biotech, Astrazeneca/oxford and Sputnik V Vaccines for COVID-19. Advanced Research Journal of Medical and Clinical Sciences, 7(1), 408-414. DOI: https://doi.org/10.15520/arjmcs.v7i01.246408
Eichinger, S., Warkentin, T. E., & Greinacher, A. (2021). Thrombotic Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. Reply. The New England Journal of Medicine, 385(3), e11.
Fischer, R. J., van Doremalen, N., Adney, D. R., Yinda, C. K., Port, J. R., Holbrook, M. G., . . . Munster, V. J. (2021). ChAdOx1 nCoV-19 (AZD1222) protects Syrian hamsters against SARS-CoV-2 B.1.351 and B.1.1.7. bioRxiv. DOI: https://doi.org/10.1101/2021.03.11.435000
Gabarin, N., Patterson, S., Pai, M., Afzaal, T., Nazy, I., Sheppard, J. A. I., ... & Warkentin, T. E. (2021). Venous thromboembolism and mild thrombocytopenia after ChAdOx1 nCoV-19 vaccination. Thrombosis and Haemostasis, 121(12), 1677-1680.
Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., Yang, M., . . . Lv, Z. (2020). Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 369(6499), 77-81.
Gary, E., O'Connor, M., Chakhtoura, M., Tardif, V., Kumova, O. K., Malherbe, D. C., . . . Haddad, E. K. (2020). Adenosine deaminase-1 enhances germinal center formation and functional antibody responses to HIV-1 Envelope DNA and protein vaccines. Vaccine, 38(22), 3821-3831. DOI: https://doi.org/10.1016/j.vaccine.2020.03.047
Goel, R. R., Apostolidis, S. A., Painter, M. M., Mathew, D., Pattekar, A., Kuthuru, O., . . . Rosenfeld, A. M. (2021). Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination. Science immunology, 6(58).
Goldstein, N., Bockstal, V., Bart, S., Luhn, K., Robinson, C., Gaddah, A., ... & Douoguih, M. (2020). Safety and Immunogenicity of Heterologous and Homologous 2-Dose Regimens of Adenovirus Serotype 26–and Modified Vaccinia Ankara–Vectored Ebola Vaccines: A Randomized, Controlled Phase 1 Study. The Journal of Infectious Diseases. DOI: https://doi.org/10.1093/infdis/jiaa586
Greinacher, A., Thiele, T., Warkentin, T. E., Weisser, K., Kyrle, P. A., & Eichinger, S. (2021). Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. New England Journal of Medicine, 384(22), 2092-2101. DOI: https://doi.org/10.1056/NEJMoa2104840
Herder, M., Graham, J. E., & Gold, R. (2020). From discovery to delivery: public sector development of the r VSV-ZEBOV Ebola vaccine. Journal of Law and the Biosciences, 7(1), lsz019.
Huynh, A., Kelton, J. G., Arnold, D. M., Daka, M., & Nazy, I. (2021). Antibody epitopes in vaccine-induced immune thrombotic thrombocytopaenia. Nature, 596(7873), 565-569. DOI: https://doi.org/10.1038/s41586-021-03744-4
Jaimes, J. A., Millet, J. K., & Whittaker, G. R. (2020). Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. IScience, 23(6), 101212.
Jeyanathan, M., Afkhami, S., Smaill, F., Miller, M. S., Lichty, B. D., & Xing, Z. (2020). Immunological considerations for COVID-19 vaccine strategies. Nature Reviews Immunology, 20(10), 615-632.
Jones, I., & Roy, P. (2021). Sputnik V COVID-19 vaccine candidate appears safe and effective. The Lancet, 397(10275), 642-643.
Kim, E., Weisel, F. J., Balmert, S. C., Khan, M. S., Huang, S., Erdos, G., . . . Gambotto, A. (2021). A single subcutaneous or intranasal immunization with adenovirus-based SARS-CoV-2 vaccine induces robust humoral and cellular immune responses in mice. European Journal of Immunology, 51(7), 1774-1784. DOI: https://doi.org/10.1002/eji.202149167
Knoll, M. D., & Wonodi, C. (2021). Oxford–AstraZeneca COVID-19 vaccine efficacy. The Lancet, 397(10269), 72-74.
Lavin, M., Elder, P. T., O’Keeffe, D., Enright, H., Ryan, E., Kelly, A., ... & O’Donnell, J. S. (2021). Vaccine‐induced immune thrombotic thrombocytopenia (VITT)–a novel clinico‐pathological entity with heterogeneous clinical presentations. British Journal of Haematology, 195(1), 76-84. DOI: https://doi.org/10.1111/bjh.17613
Long, B., Bridwell, R., & Gottlieb, M. (2021). Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines. The American journal of emergency medicine, 49, 58-61. DOI: https://doi.org/10.1016/j.ajem.2021.05.054
Lundstrom, K. (2021). Viral Vectors for COVID-19 Vaccine Development. Viruses, 13(2). DOI: https://doi.org/10.3390/v13020317
Makris, M., Pavord, S., Lester, W., Scully, M., & Hunt, B. (2021). Vaccine‐induced immune thrombocytopenia and thrombosis (VITT). Research and practice in thrombosis and haemostasis, 5(5), e12529. DOI: https://doi.org/10.1002/rth2.12529
Marcucci, R., & Marietta, M. (2021). Vaccine-induced thrombotic thrombocytopenia: the elusive link between thrombosis and adenovirus-based SARS-CoV-2 vaccines. Internal and Emergency Medicine, 16(5), 1113-1119. DOI: https://doi.org/10.1007/s11739-021-02793-x
Marzi, A., & Mire, C. E. (2019). Current Ebola virus vaccine progress. BioDrugs, 33(1), 9-14.
Matchett, W. E., Joag, V., Stolley, J. M., Shepherd, F. K., Quarnstrom, C. F., Mickelson, C. K., . . . Masopust, D. (2021). Nucleocapsid Vaccine Elicits Spike-Independent SARS-CoV-2 Protective Immunity. The Journal of Immunology, 207(2), 376-379. DOI: https://doi.org/10.4049/jimmunol.2100421
McDonald, I., Murray, S. M., Reynolds, C. J., Altmann, D. M., & Boyton, R. J. (2021). Comparative systematic review and meta-analysis of reactogenicity, immunogenicity and efficacy of vaccines against SARS-CoV-2. NPJ Vaccines, 6(1), 1-14. DOI: https://doi.org/10.1038/s41541-021-00336-1
Nicolai, L., Leunig, A., Pekayvaz, K., Anjum, A., Riedlinger, E., Eivers, L., . . . Kaiser, R. (2021). Thrombocytopenia and splenic platelet directed immune responses after intravenous ChAdOx1 nCov-19 administration. Biorxiv. DOI: https://doi.org/10.1101/2021.06.29.450356
Oliver, S. E., & Shimabukuro, T. T. (2021). Johnson & Johnson/Janssen COVID-19 vaccine and cerebral venous sinus thrombosis with thrombocytopenia–update for clinicians on early detection and treatment. Centers for Disease Control and Prevention. Retrieved from https://emergency.cdc.gov/coca/calls/2021/callinfo_041521.asp
Papageorgiou, A. C., & Mohsin, I. (2020). The SARS-CoV-2 spike glycoprotein as a drug and vaccine target: Structural insights into its complexes with ACE2 and antibodies. Cells, 9(11), 2343.
Pomara, C., Sessa, F., Ciaccio, M., Dieli, F., Esposito, M., Garozzo, S. F., . . . Salerno, M. (2021a). Post-mortem findings in vaccine-induced thrombotic thrombocytopenia. haematologica, 106(8), 2291.
Pomara, C., Sessa, F., Ciaccio, M., Dieli, F., Esposito, M., Giammanco, G. M., . . . Rappa, F. (2021b). COVID-19 Vaccine and Death: Causality Algorithm According to the WHO Eligibility Diagnosis. Diagnostics, 11(6), 955.
Ramasamy, M. N., Minassian, A. M., Ewer, K. J., Flaxman, A. L., Folegatti, P. M., Owens, D. R., . . . Group, O. C. V. T. (2021). Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet, 396(10267), 1979-1993. DOI: https://doi.org/10.1016/S0140-6736(20)32466-1
Reilly‐Stitt, C., Kitchen, S., Jennings, I., Horner, K., Jones, R., Makris, M., & Walker, I. D. (2021). Anti‐PF4 testing for vaccine‐induced immune thrombocytopenia and thrombosis and heparin induced thrombocytopenia: Results from a UK National External Quality Assessment Scheme exercise April 2021. Journal of Thrombosis and Haemostasis, 19(9), 2263-2267. DOI: https://doi.org/10.1111/jth.15423
Riad, A., Pokorná, A., Mekhemar, M., Conrad, J., Klugarová, J., Koščík, M., . . . Attia, S. (2021). Safety of ChAdOx1 nCoV-19 Vaccine: Independent Evidence from Two EU States. Vaccines (Basel), 9(6), 673. DOI: https://doi.org/10.3390/vaccines9060673
Rice, A., Verma, M., Shin, A., Zakin, L., Sieling, P., Tanaka, S., ... & Soon-Shiong, P. (2021). Intranasal plus subcutaneous prime vaccination with a dual antigen COVID-19 vaccine elicits T-cell and antibody responses in mice. Scientific Reports, 11(1), 1-15. DOI: https://doi.org/10.1038/s41598-021-94364-5
Rosen, B., Waitzberg, R., & Israeli, A. (2021). Israel’s rapid rollout of vaccinations for COVID-19. Israel journal of health policy research, 10(1), 1-14.
Rubin, R. (2021). COVID-19 Vaccines vs Variants—Determining How Much Immunity Is Enough. Jama, 325(13), 1241-1243. DOI: 10.1001/jama.2021.3370
Sadoff, J., Gray, G., Vandebosch, A., Cárdenas, V., Shukarev, G., Grinsztejn, B., . . . Group, E. S. (2021). Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. New England Journal of Medicine, 384(23), 2187-2201. DOI: https://doi.org/10.1056/NEJMoa2101544
Schultz, N. H., Sørvoll, I. H., Michelsen, A. E., Munthe, L. A., Lund-Johansen, F., Ahlen, M. T., . . . Holme, P. A. (2021). Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. New England journal of medicine, 384(22), 2124-2130. DOI: https://doi.org/10.1056/NEJMoa2104882
Sharifian-Dorche, M., Bahmanyar, M., Sharifian-Dorche, A., Mohammadi, P., Nomovi, M., & Mowla, A. (2021). Vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis post COVID-19 vaccination; a systematic review. Journal of the neurological sciences, 428, 117607. DOI: https://doi.org/10.1016/j.jns.2021.117607
Singh, N., Pandey, A., Jayashankar, L., & Mittal, S. K. (2008). Bovine adenoviral vector-based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus. Molecular Therapy, 16(5), 965-971. DOI: https://doi.org/10.1038/mt.2008.12
Swanson, P. A., Padilla, M., Hoyland, W., McGlinchey, K., Fields, P. A., Bibi, S., . . . Kelly, E. J. (2021). T-cell mediated immunity after AZD1222 vaccination: A polyfunctional spike-specific Th1 response with a diverse TCR repertoire. medRxiv. DOI: https://doi.org/10.1101/2021.06.17.21259027
Tao, Y.-Y., Li, J.-X., Hu, Y.-M., Hu, Y.-S., Zeng, G., & Zhu, F.-C. (2021). Quadrivalent influenza vaccine (Sinovac Biotech) for seasonal influenza prophylaxis. Expert Review of Vaccines, 20(1), 1-11.
Tsilingiris, D., Vallianou, N. G., Karampela, I., & Dalamaga, M. (2021). Vaccine induced thrombotic thrombocytopenia: The shady chapter of a success story. Metabolism Open, 11, 1-6. DOI: https://doi.org/10.1016/j.metop.2021.100101
Valsecchi, M., Lauterio, A., Crocchiolo, R., De Carlis, R., Pugliano, M., Centonze, L., . . . Fumagalli, R. (2021). New-onset antibodies to platelet factor 4 following liver transplantation from a donor with vaccine-induced thrombotic thrombocytopenia (VITT). Liver Transpl. DOI: https://doi.org/10.1002/lt.26277
Wang, H., Zhang, Y., Huang, B., Deng, W., Quan, Y., Wang, W., . . . Zhang, J. (2020). Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell, 182(3), 713-721.
Warkentin, T. E., & Greinacher, A. (2021). Spontaneous HIT syndrome: Knee replacement, infection, and parallels with vaccine-induced immune thrombotic thrombocytopenia. Thrombosis Research, 204, 40-51. DOI: https://doi.org/10.1016/j.thromres.2021.05.018
Watson, R. (2021). Covid-19: EU looks to speed up vaccine rollout. In: British Medical Journal Publishing Group. BMJ, 372, n730. DOI: https://doi.org/10.1136/bmj.n730 (Published 16 March 2021)
Wolf, M. E., Luz, B., Niehaus, L., Bhogal, P., Bäzner, H., & Henkes, H. (2021). Thrombocytopenia and intracranial venous sinus thrombosis after “COVID-19 vaccine AstraZeneca” exposure. Journal of Clinical Medicine, 10(8), 1599.
Xia, S., Zhang, Y., Wang, Y., Wang, H., Yang, Y., Gao, G. F., . . . Lou, Z. (2021). Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. The Lancet Infectious Diseases, 21(1), 39-51.
Xie, L., Yi, K., & Li, Y. (2021). SARS_CoV2 RBD gene transcription cannot be driven by CMV promoter. Virology, 558, 22-27. DOI: https://doi.org/10.1016/j.virol.2021.02.010
Xu, K., An, Y., Li, Q., Huang, W., Han, Y., Zheng, T., . . . Dai, L. (2021). Recombinant chimpanzee adenovirus AdC7 expressing dimeric tandem-repeat spike protein RBD protects mice against COVID-19. Emerg Microbes Infect, 10(1), 1574-1588. DOI: https://doi.org/10.1080/22221751.2021.1959270
Yang, Y., Peng, F., Wang, R., Guan, K., Jiang, T., Xu, G., . . . Chang, C. (2020). The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. Journal of autoimmunity, 109, 102434.
Zhu, F.-C., Guan, X.-H., Li, Y.-H., Huang, J.-Y., Jiang, T., Hou, L.-H., . . . Wang, W.-J. (2020a). Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet, 396(10249), 479-488.
Zhu, F.-C., Li, Y.-H., Guan, X.-H., Hou, L.-H., Wang, W.-J., Li, J.-X., . . . Wang, L. (2020b). Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. The Lancet, 395(10240), 1845-1854.
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., . . . Lu, R. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England journal of medicine.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.