Charcoal and gravel basin lined solar still for brackish water purification


  • Nsikan Ime Obot Solar Physics Group, Physics Department, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
  • Sulaimon Adekunle Akanbi Solar Physics Group, Physics Department, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
  • Ahmed Abdulyaqub Ajiboye Solar Physics Group, Physics Department, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
  • Michael Anthony C. Chendo Solar Physics Group, Physics Department, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria


basin lining, brackish water treatment, energy storage materials, equatorial site, floating charcoal, solar distiller, submerged black gravel


Solar still technology is one of the most cost-effective and efficient means of brackish water purification, particularly for tropical remote regions deprived of electricity supply.  This study evaluates the impacts of lining the basin of a locally made solar still with energy storage materials at an equatorial location.  During clear days, distillates were got from the distiller while its basin was lined with: (i) no material, (ii) black gravel, (iii) charcoal, and (iv) a mixture of both substances.  Compared to when no basin liner was used, the volume of distillate obtained during active hours increased by approximately 9%, 26%, and 106%, respectively.  However, during the night, the gravel-lined solar still had the highest output, and the peak hourly distillates ranged from approximately 9-24 ml, depending on the basin type.  The daily thermal efficiencies for the four solar stills were 17.6%, 18.9%, 14.4%, and 20.4%, respectively.  Turbidity, total dissolved solids, and total coliform counts in the offensive, cloudy brackish feed were reduced to the recommended limits for drinkable water.  Besides the effect of solar radiation intensity on distillate production, the heat absorbance and transfer capabilities of basin liners are essential considerations for solar stills.  A solar still, lined with a mixture of submerged black gravel and floating charcoal pieces, is recommended for brackish water purification due to outstanding distillate yield.  Alternatively, an energy storage material that combines the qualities of both black gravel and charcoal should be developed for usage in solar still.


Aboyeji, O. O. (2013). Freshwater pollution in some Nigerian local communities, causes, consequences and probable solutions. Academic Journal of Interdisciplinary Studies, 2(13), 111-117. DOI: 10.5901/ajis.2013.v2n13p111

Ademiluyi, I. A., & Odugbesan, J. A. (2008). Sustainability and impact of community water supply and sanitation programmes in Nigeria: an overview. African Journal of Agricultural Research, 3(12), 811–817. DOI:

Akash, B. A., Mohsen, M. S., Osta, O., & Elayan, Y. (1998). Experimental evaluation of a single-basin solar still using different absorbing materials. Renewable energy, 14(1-4), 307-310. DOI:

Akinsete, V. A., & Duru, C. U. (1979). A cheap method of improving the performance of roof type solar stills. Solar Energy, 15(5), 593-597.

Allan, J. D., & Flecker, A. S. (1993). Biodiversity conservation in running waters. BioScience, 43(1), 32-43. DOI:

Alva, G., Liu, L., Huang, X., & Fang, G. (2017). Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews, 68, 693-706. DOI:

Aybar, H. Ş., Egelioğlu, F., & Atikol, U. (2005). An experimental study on an inclined solar water distillation system. Desalination, 180(1-3), 285-289. DOI: 10.1016/j.desal.2005.01.009

Ayoub, G. M. & Malaeb, L. (2012). Developments in solar still desalination systems: a critical review. Critical Reviews in Environmental Science and Technology, 42(19), 2078–2112. DOI: 10.1080/10643389.2011.574104

Badenhorst, H. (2019). A review of the application of carbon materials in solar thermal energy storage. Solar Energy, 192, 53–68. DOI:

Banat, F., Jumah, R., & Garaibeh, M. (2002). Exploitation of solar energy collected by solar stills for desalination by membrane distillation. Renewable Energy, 25(2), 293-305. DOI:

Bataineh, K. M., & Abbas, M. A. (2020). Improving the performance of solar still by using nanofluids, vacuuming, and optimal basin water thickness. Desalination and Water Treatment, 173, 105-116. DOI: 10.5004/dwt.2020.24799

Brook, C. G. D. (1971). Determination of body composition of children from skinfold measurements. Archives of Disease in Childhood, 46, 182–184. DOI: 10.1136/adc.46.246.182

Cappelletti, G. M. (2002). An experiment with a plastic solar still. Desalination, 142(3), 221–227. DOI:

Chen, C., Kuang, Y., & Hu, L. (2019). Challenges and opportunities for solar evaporation. Joule, 3(3), 683-718. DOI:

Chumlea, W. C., Guo, S. S., Zeller, C. M., Reo, N. V., & Siervogel, R. M. (1999). Total body water data for white adults 18 to 64 years of age: the Fels Longitudinal Study. Kidney international, 56(1), 244-252. DOI:

Dubey, M. & Mishra, D.R. (2021). Experimental analysis of double slope solar still augmented with dye, pebbles and metal chips. Environmental Science and Pollution Research, 28, 2207–22090.

Elashmawy, M. (2021). Improving the performance of a parabolic concentrator solar tracking-tubular solar still (PCST-TSS) using gravel as a sensible heat storage material. Desalination, 473(1), 114182.

Egarievwe, S. U., Animalu, A. O. E., & Okeke, C. E. (1991). Harmattan performance of a solar still in the Guinea Savannah. Renewable energy, 1(5-6), 799-801. DOI:

Evangelista, S., Viccione, G., & Siani, O. (2019). A new cost effective, long life and low resistance filter cartridge for water treatment. Journal of water process engineering, 27, 1-14. DOI:

Falkenmark, M. (1990). Rapid population growth and water scarcity: The predicament of tomorrow's Africa. Population and Development Review, 16, 81-94.

Fewtrell, L., Kaufmann, R. B., Kay, D., Enanoria, W., Haller, L., & Colford Jr, J. M. (2005). Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: a systematic review and meta-analysis. The Lancet infectious diseases, 5(1), 42-52. DOI:

Foell, W., Pachauri, S., Spreng, D., & Zerriffi, H. (2011). Household cooking fuels and technologies in developing economies. Energy policy, 39(12), 7487-7496. DOI:

Gallagher, D., Visser, M., Sepulveda, D., & Pierson, S. B. (1996). How useful is body mass index for comparison of body fatness across age, sex and ethnic groups?. American Journal of Epidermiology, 143(3), 228–239. DOI:

Ge, Z., Ye, F., Cao, H., Leng, G., Qin, Y., & Ding, Y. (2014). Carbonate-salt-based composite materials for medium- and high-temperature thermal energy storage. Particuology, 15, 77–81. DOI:

Ghoneyem, A. & Ileri, A. (1997). Software to analyze solar stills and an experimental study of the effects of cover. Desalination, 114(1), 37–44. DOI:

Gugulothu, R., Somanchi, N. S., Devi, R. S. R., & Banoth, H. B. (2015). Experimental investigations on performance evaluation of a single basin solar still using different energy absorbing materials. Aquatic Procedia, 4, 1483–1491. DOI:

He, W., Zhou, L., Wang, M., Cao, Y., Chen, X., & Hou, X. (2021). Structure development of carbon-based solar-driven water evaporation systems. Science Bulletin, 66(14), 1472–1483. DOI:10.1016/j.scib.2021.02.014

Herrmann, U., & Kearney, D. W. (2002). Survey of thermal energy storage for parabolic trough power plants. Journal of Solar Energy Engineering, 124(2), 145–152. DOI:

Higashihara, E., Nutahara, K., Tanbo, M., Hara, H., Miyazaki, I., Kobayashi, K., & Nitatori, T. (2014). Does increased water intake prevent disease progression in autosomal dominant polycystic kidney disease? Nephrology Dialysis Transplantation, 29(9), 1710-1719. DOI: 10.1093/ndt/gfu093

Hrudey, S. E., Payment, P., Huck, P. M., Gillham, R. W., & Hrudey, E. J. (2003). A fatal waterborne disease epidemic in Walkerton, Ontario: comparison with other waterborne outbreaks in the developed world. Water Science and Technology, 47(3), 7-14.

Kabeel, A. E., Arunkumar, T., Denkenberger, D. C., & Sathyamurthy, R. (2017). Performance enhancement of solar still through efficient heat exchange mechanism–a review. Applied Thermal Engineering, 114, 815-836. DOI:

Kalogirou, S. A. (2005). Seawater desalination using renewable energy sources. Progress in energy and combustion science, 31(3), 242-281. DOI:

Layek, A. (2018). Exergetic analysis of basin type solar still. Engineering Science and Technology, an International Journal, 21(1), 99-106. DOI:

Murugavel, K. K., Sivakumar, S., Ahamed, J. R., Chockalingam, K. K., & Srithar, K. (2010). Single basin double slope solar still with minimum basin depth and energy storing materials. Applied energy, 87(2), 514-523. DOI:

Nafey, A. S., Abdelkader, M., Abdelmotalip, A. & Mabrouk, A. A. (2001). Solar still productivity enhancement. Energy Conversion and Management, 42(11), 1401–1408. DOI:

Naim, M. M., & Abd El Kawi, M. A. (2003). Non-conventional solar stills Part 1. Non-conventional solar stills with charcoal particles as absorber medium. Desalination, 153(1-3), 55-64. DOI:

Narayanan, S. S., Yadav, A., & Khaled, M. N. (2020). A concise review on performance improvement of solar stills. SN Applied Sciences, 2(3), 1-15. DOI:

Nayi, K. H., & Modi, K. V. (2018). Pyramid solar still: a comprehensive review. Renewable and Sustainable Energy Reviews, 81(1), 136-148. DOI:

Ogunlesi, T. (2016). Inside Makoko: Danger and ingenuity in the world’s biggest floating slum. The Guardian, 23.

Okeke, C. E., Egarievwe, S. U. & Animalu, A. O. E. (1990). Effects of coal and charcoal on solar-still performance. Energy, 15(11), 1071-1073. DOI:

Oruc, M. E., Desai, A. V., Kenis, P. J., & Nuzzo, R. G. (2016). Comprehensive energy analysis of a photovoltaic thermal water electrolyzer. Applied Energy, 164, 294-302. DOI:

Panchal, H., Hishan, S. S., Rahim, R., & Sadasivuni, K. K. (2020). Solar still with evacuated tubes and calcium stones to enhance the yield: An experimental investigation. Process Safety and Environmental Protection, 142, 150-155. DOI:

Pimentel, D., Houser, J., Preiss, E., White, O., Fang, H., Mesnick, L., ... & Alpert, S. (1997). Water resources: agriculture, the environment, and society. BioScience, 47(2), 97-106. DOI:

Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Pres-tegaard, K. L., Richter, B. D., ... & Stromberg, J. C. (1997). The natural flow regime: a paradigm for river con-servation and restoration. BioScience47, 769-784. DOI:

Pumera, M. (2011). Graphene-based nanomaterials for energy storage. Energy & Environmental Science, 4(3), 668-674.

Robertson, G. P., Paul, E. A., & Harwood, R. R. (2000). Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science, 289(5486), 1922-1925. DOI: 10.1126/science.289.5486.1922

Rylander, R., & Arnaud, M. J. (2004). Mineral water intake reduces blood pressure among subjects with low urinary magnesium and calcium levels. BMC public health, 4(1), 1-5. DOI:

Sontrop, J. M., Dixon, S. N., Garg, A. X., Buendia-Jimenez, I., Dohein, O., Huang, S. H. S., & Clark, W. F. (2013). Association between water intake, chronic kidney disease, and cardiovascular disease: a cross-sectional analysis of NHANES data. American journal of nephrology, 37(5), 434-442. DOI:

Tinker, S. C., Moe, C. L., Klein, M., Flanders, W. D., Uber, J., Amirtharajah, A., ... & Tolbert, P. E. (2010). Drinking water turbidity and emergency department visits for gastrointestinal illness in Atlanta, 1993–2004. Journal of exposure science & environmental epidemiology, 20(1), 19-28. DOI:

Tiwari, G. N., Singh, H. N., & Tripathi, R. (2003). Present status of solar distillation. Solar energy, 75(5), 367-373. DOI:

Vörösmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. science, 289(5477), 284-288. DOI: 10.1126/science.289.5477.284

Wells, J. C. K., & Fewtrell, M. S. (2006). Measuring body composition. Archives of disease in childhood, 91(7), 612-617. DOI:

Widerström, M., Schönning, C., Lilja, M., Lebbad, M., Ljung, T., Allestam, G., ... & Lindh, J. (2014). Large outbreak of Cryptosporidium hominis infection transmitted through the public water supply, Sweden. Emerging infectious diseases, 20(4), 581-589. DOI: 10.3201/eid2004.121415

Sakthivel, M., & Shanmugasundaram, S. (2008). Effect of energy storage medium (black granite gravel) on the performance of a solar still. International Journal of Energy Research, 32(1), 68-82. DOI: 10.1002/er.1335

Sampathkumar, K., Arjunan, T. V., Pitchandi, P., & Senthilkumar, P. (2010). Active solar distillation—A detailed review. Renewable and sustainable energy reviews, 14(6), 1503-1526. DOI:

Wu, J., Wang, L., & Meng, L. (2017). Analysis of mineral composition and microstructure of gravel aggregate based on XRD and SEM. Road Materials and Pavement Design, 18(sup3), 139-148. DOI: 10.1080/14680629.2017.1329869

Yadav, S., & Sudhakar, K. (2015). Different domestic designs of solar stills: A review. Renewable and Sustainable Energy Reviews, 47, 718-731. DOI:




How to Cite

Nsikan Ime Obot, Sulaimon Adekunle Akanbi, Ahmed Abdulyaqub Ajiboye, & Michael Anthony C. Chendo. (2023). Charcoal and gravel basin lined solar still for brackish water purification. Journal of Current Science and Technology, 12(1), 110–127. Retrieved from



Research Article