Hot carrier effects on real and imaginary parts of Brillouin susceptibilities of semiconductor magneto-plasmas
Keywords:
Brillouin susceptibility, hot carrier effects, laser-plasma interactions, magnetic field, semiconductor magneto-plasmasAbstract
An analytical investigation is made of hot carrier effects on real and imaginary parts of Brillouin susceptibility (Re (cB), Im (cB)) of semiconductor magneto-plasmas. Coupled mode approach is used to obtain expressions for (Re (cB) and Im (cB)). Numerical calculations are made for n–InSb crystal – CO2 laser system. Efforts are made to obtain enhanced values of (Re (cB) and Im (cB))as well as change of their sign under appropriate selection of external magnetic field (B0) and doping concentration (n0). The hot carrier effects of intense laser radiation modifies the momentum transfer collision frequency of carriers and consequently the nonlinearity of the medium, which in turn (i) further enhances (Re (cB) and Im (cB)), (ii) shifts the enhanced (Re (cB) and Im (cB)) towards smaller values of B0, and (iii) widens the range of B0 at which change of sign of (Re (cB) and Im (cB)) occur. The change of sign of enhanced (Re (cB) and Im (cB)) of semiconductor magneto-plasmas validates the possibility of chosen Brillouin medium as a potential candidate material for the fabrication of stimulated Brillouin scattering dependent widely tunable and efficient optoelectronic devices such as optical switches and frequency converters.
References
Bai, Z., Yuan, H., Liu, Z., Xu, P., Gao, Q., Williams, R. J., ... & Lu, Z. (2018). Stimulated Brillouin scattering materials, experimental design and applications: A review. Optical Materials, 75, 626-645. DOI: 10.1016/j.optmat.2017.10.035
Beer, A. C. (1963). Galvanometric Effects in Semiconductors: Solid State Physics. New York, USA: Academic Press.
Bhan, S., Singh, H. P., Kumar, V., & Singh, M. (2019). Low threshold and high reflectivity of optical phase conjugate mode in transversely magnetized semiconductors. Optik,184, 467-472. DOI: 10.1016/j.ijleo.2019.04.106
Chefranov, S. G., & Chefranov A. S. (2020). Hydrodynamic Methods and Exact Solutions in Applications to the Electromagnetic Field Theory in Medium. In: Nonlinear Optics – Novel Results in Field Theory in Medium. Lembrikov B. (ed.). UK: Intechopen.
Conwell, E. M. (1967). High Field Transport in Semiconductors. New York, USA: Academic Press, pp. 159.
Garmire, E. (2017). Prospectives on stimulated Brillouin scattering. New Journal of Physics, 19, 011003. DOI: 10.1088/1367–2630/aa5447
Garmire, E. (2018). Stimulated Brillouin review: invented 50 years ago and applied today. International Journal of Optics, 2018, Article ID 2459501. DOI: 10.1155/2018/2459501
Generazio, E. R., & Spector, H. N. (1979). Free-carrier absorption in quantizing magnetic fields. PhyicalReview B, 20, 5162-5167. DOI: 10.1103/PhysRevB.20.5162
Hass, F., & Bret, A. (2012). Nonlinear low-frequency collisional quantum Buneman instability, Europhysics Letters, 97(2), 26001. DOI: 10.1209/0295-5075/97/26001
Lu, Y., Zhang, Q., Wu, Q., Chen, Z., & Xu, J. (2021). Giant enhancement of THz–frequency optical nonlinearity by phonon polariton in ionic crystals. Nature Communications, 12, 3183. DOI: 10.1038/s41467-021-23526-w
Moghanjoughi, M. A. (2011). Nonlinear ion waves in Fermi-Dirac pair plasmas. Physics of Plasmas, 18(1), 012701. DOI: 10.1063/1.3533425
Mokkapati, S., & Jagadish, C. (2009). III-V compound SC for optoelectronic devices. Materialstoday, 12(4), 22-32. DOI: 10.1016/S1369-7021(09)70110-5
Nimje, N., Dubey, S., & Ghosh, S. (2011). Parametric interaction in acousto-optical semiconductor plasmas in the presence of hot carriers. Chinese Journal of Physics- Taipei, 49(4), 901-916.
Palik, E. D., & Furdyna, J. K. (1970). Infrared and microwave magnetoplasma effects in semiconductors. Reports on Progress in Physics, 33(3), 1193-1322. DOI: 10.1088/0034-4885/33/3/307
Rasheed, A., Jamil, M., Siddique, M., Huda, F., & Jung, Y. D. (2014). Beam excited acoustic instability in semiconductor quantum plasmas. Physics of Plasmas, 21(6), 062107. DOI: 10.1063/1.4883224
Sandeep, D., S., & Singh, N. (2017). Parametric excitation of optical phonons in weakly polar narrow band gap magnetized semiconductor plasmas. Modern Physics Letters B, 31(31), 1750294. DOI: 10.1142/S0217984917502943
Säynätjoki, A., Karvonen, L., Rostami, H., Autere, A., Mehravar, S., Lombardo, A., ... & Sun, Z. (2017). Ultra-strong nonlinear optical processes and trigonal warping in MoS 2 layers. Nature communications, 8(1), 1-8. DOI: 10.1038/s41467-017-00749-4
Sharaf, E. R., Mohammed, M. I., Zahran, H. Y., & Shaaban, E. R. (2021). High refractive index and third-order nonlinear optical susceptibility of nanostructured ZnSe/FTO thin films: towards smart multifunctional optoelectronic materials. Physica B Condensed Matter, 602, 412595. DOI: 10.1016/j.physb.2020.412595
Sharma, G., & Ghosh, S. (2001). Parametric excitation and amplification of an acoustic wave in a magnetised piezoelectric semiconductor. physica status solidi (a), 184(2), 443-452. DOI: 10.1002/1521-396X(200104)184:2<443::AID-PSSA443>3.0.CO;2-S
Sharma, G., Dad, R. C., & Ghosh, S. (2015). Stimulated Brillouin scattering of laser in semiconductor plasma embedded with nano-sized grains. AIP Conference Proceedings, 1670, 0300026. DOI: 10.1063/1.4926710
Singh, M., Aghamkar, P., Kishore, N., & Sen, P. K. (2006). Influence of piezoelectricity and magnetic field on stimulated Brillouin scattering in III–V semiconductors. Journal of Nonlinear Optical Physics & Materials, 15(4), 465-479. DOI: 10.1142/S0218863506003487
Singh, M., & Aghamkar, P. (2008). Mechanism of phase conjugation via stimulated Brillouin scattering in narrow bandgap semiconductors. Optics Communications, 281(5), 1251-1255. DOI: https://doi.org/10.1016/j.optcom.2007.10.102
Singh, M., Aghamkar, P., Kishore, N., & Sen, P. K. (2008). Nonlinear absorption and refractive index of Brillouin scattered mode in semiconductor-plasmas by an applied magnetic field. Optics and Laser Technology, 40(1), 215-222. DOI: 10.1016/j.optlastec.2007.02.001
Singh, M., Gahlawat, J., Sangwan, A., Singh, N., & Singh, M. (2020). Nonlinear optical susceptibilities of a piezoelectric semiconductor magneto-plasma. Springer Proceedings in Physics, 256, 189-202, ch. 20 (2020). DOI: 10.1007/978-981-15-8625-5_20
Sodha, M. S., Ghatak, A. K., & Tripathi, V. K. (1974). Self-focusing of laser beams in dielectrics, plasmas and semiconductors. New Delhi, India: Tata McGraw, pp. 55-62.
Takeya, K., Kamei, T., Kawase, K., & Uchida, H. (2020). Nonlinear optical processes of second-order nonlinear optical susceptibility (2)133 in an organic nonlinear optical crystal DAST. Optics Letters, 45(19), 5348-5351. DOI: 10.1364/OL.400235
Toudert, J., & Serna, R. (2017). Interband transitions in semi-metals, semiconductors, and topological insulators: a new driving force for plasmonics and nanophotonics. Optical Materials Express, 7(7), 2299-2325. DOI: 10.1364/OME.7.002299
Tuz, V. R., Fesenko, V. I., Fedorin, I. V., Sun, H. B.,& Han, W. (2017). Coexistence of bulk and surface polaritons in a magnetic-semiconductor superlattice influenced by a transverse magnetic field. Journal of Applied Physics, 121(10), 103102. DOI: 10.1063/1.4977956
Uzma, C., Zeba, I., Shah, H. A., & Salimullah, M. (2009). Stimulated Brillouin scattering of laser radiation in a piezoelectric semiconductor: quantum effect. Journal of Applied Physics, 105(1), 013307. DOI: 10.1063/1.3050340
Vanshpal, R., Dubey, S., & Ghosh, S. (2013). Stimulated Brillouin scattering in semiconductors: Quantum effects, AIP Conference Proceedings, 1535(1), 335. DOI: 10.1063/1.4810237
Wang, K., Seidel, M., Nagarajan, K., Chervy, T., Genet, C., & Ebbesen, T. (2021). Large optical nonlinearity enhancement under electronic strong coupling. Nature Communications, 12(1), 1486. DOI: 10.1038/s41467-021-21739-7
You, J. W., Bongu, S. R., Bao, Q., & Panoiu, N. C. (2018). Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects. Nanophotonics, 8(1), 63-97. DOI: 10.1515/nanoph—2018-0106
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.