Interlaminar shear strength of chemically treated Kevlar/Cucurbitaceae fiber metal laminated hybrid composites

Authors

  • Francis Xavier Joseph School of Mechanical Engineering, VIT Bhopal University, Bhopal, 466114, Madhya Pradesh, India
  • Sudeshkumar Moranahali Ponnusamy Department of Mechanical Engineering, Shreenivasa Engineering College, Dharmapuri, 635301, Tamil Nadu, India
  • M. P. Natarajan Department of Mechanical Engineering, Bharath Institute of Higher Education and Research, Chennai-600073, India
  • Jayabalakrishnan Duraivelu Department of Mechanical Engineering, Sriram Engineering College, Chennai, 602024, India
  • Jayaseelan Veerasundaram Department of Mechanical Engineering, Prathyusha Engineering College, Chennai, 602025, India
  • Ramasamy Nallamuthu Department of Mechanical Engineering, Prathyusha Engineering College, Chennai, 602025, India

Keywords:

chemical treatment, fiber metal laminates, interphase, sequencing layer, surface modification

Abstract

Many scientists and enterprises have shown their desire to develop novel materials with good mechanical capabilities and low-density equivalents to aluminium alloys in recent years.  This is particularly noticeable in the aircraft and aerospace industries.  Fiber Metal Laminates (FMLs) were newer composites, with the aramid aluminum laminate (ARALL) type laminates having aluminium and Aramid/epoxy composites.  Furthermore, the Cucurbitaceae fiber has been utilized to test the interlaminar shear strength (ILSS) of fiber metal laminates.  This paper introduces the FML made of aluminium and Kevlar/Cucurbitaceae/epoxy layers.  In addition, the chemical treatment has been employed to change the surface of Kevlar and Cucurbitaceae fibers to develop polar components, resulting in improved inter-phase strength of FML composites.  To examine the ILSS characteristics of FML composites, four laminate sequence combinations were chosen.  When compared to other sequencing hybrid FML composites, the ILSS of hybrid FML composites improved by 41.76 percent.  This sequence of reinforcing fibers influences the degree of the laminate structure, which can substantially impact the ability to construct laminates.  The ability of the composite-metal bonding to give strong adhesive characteristics was an essential aspect impacting the laminate properties as a whole.  A scanning electron microscope was used to examine the treated fibers.

References

Alhijazi, M., Safaei, B., Zeeshan, Q., Asmael, M., Eyvazian, A., & Qin, Z. (2020). Recent developments in luffa natural fiber composites. Sustainability, 12(18), 7683. DOI: https://doi.org/10.3390/su12187683

Alsaadi, M., Ugla, A. A., & Erklig, A. (2017). A comparative study on the interlaminar shear strength of carbon, glass, and Kevlar fabric/epoxy laminates filled with SiC particles. Journal of Composite Materials, 51(20), 2835-2844. DOI: https://doi.org/10.1177%2F0021998317701559

Alves, J. L. C., Prado, K. S., & de Paiva, J. M. (2021). Compressive and interlaminar shear strength properties of biaxial fibreglass laminates hybridized with jute fibre produced by vacuum infusion. Journal of Natural Fibers, 18(11), 1772-1787. DOI: https://doi.org/10.1080/15440478.2019.1697996

Bellini, C., Di Cocco, V., Iacoviello, F., & Sorrentino, L. (2019). Flexural strength of aluminium carbon/epoxy fibre metal laminates. Material Design & Processing Communications, 1(1), e40. DOI: https://doi.org/10.1002/mdp2.40

Bieniaś, J., Jakubczak, P., Droździel, M., & Surowska, B. (2020). Interlaminar shear strength and failure analysis of aluminium-carbon laminates with a glass fiber interlayer after moisture absorption. Materials, 13(13), 2999. DOI: https://doi.org/10.3390/ma13132999

Bigdilou, M. B., Eslami-Farsani, R., Ebrahimnezhad-Khaljiri, H., & Mohammadi, M. A. (2020). Experimental assessment of adding carbon nanotubes on the impact properties of Kevlar-ultrahigh molecular weight polyethylene fibers hybrid composites. Journal of Industrial Textiles, 1-19. DOI: https://doi.org/10.1177%2F1528083720921483

Chatzi, E. G., Tidrick, S. L., & Koenig, J. L. (1988). Characterization of the surface hydrolysis of kevlar‐49 fibers by diffuse reflectance FTIR spectroscopy. Journal of Polymer Science Part B: Polymer Physics, 26(8), 1585-1593. DOI: https://doi.org/10.1002/polb.1988.090260803

Eslami-Farsani, R., Aghamohammadi, H., Khalili, S. M. R., Ebrahimnezhad-Khaljiri, H., & Jalali, H. (2020). Recent trend in developing advanced fiber metal laminates reinforced with nanoparticles: A review study. Journal of Industrial Textiles, 1528083720947106. DOI: https://doi.org/10.1177%2F1528083720947106

Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829-892. DOI: https://doi.org/10.1007/s10853-019-03990-y

Hallad, S. A., Banapurmath, N. R., Dhage, V., Ajarekar, V. S., Godi, M. T., & Shettar, A. S. (2018, June). Kevlar reinforced polymer matrix composite for structural application. In IOP Conference Series: Materials Science and Engineering (Vol. 376, No. 1, p. 012074). IOP Publishing. DOI: http://dx.doi.org/10.1088/1757-899X/376/1/012074

Hariprasad, K., Ravichandran, K., Jayaseelan, V., & Muthuramalingam, T. (2020). Acoustic and mechanical characterisation of polypropylene composites reinforced by natural fibres for automotive applications. Journal of Materials Research and Technology, 9(6), 14029-14035. DOI: https://doi.org/10.1016/j.jmrt.2020.09.112

Lin, T. K., Wu, S. J., Lai, J. G., & Shyu, S. S. (2000). The effect of chemical treatment on reinforcement/matrix interaction in Kevlar-fiber/bismaleimide composites. Composites Science and Technology, 60(9), 1873-1878. DOI: https://doi.org/10.1016/S0266-3538(00)00074-9

Lokeshkumar, J., Ramasamy, N., & Bak, K. M. (2020, October). Compressive response on Kevlar hybrid composite pipe under sea water environment. In AIP Conference Proceedings (Vol. 2283, No. 1, p. 020086). AIP Publishing LLC. DOI: https://doi.org/10.1063/5.0025018

Lotfi, A., Li, H., Dao, D. V., & Prusty, G. (2021). Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials, 34(2), 238-284. DOI: https://doi.org/10.1177%2F0892705719844546

Mohammed, L., Ansari, M. N., Pua, G., Jawaid, M., & Islam, M. S. (2015). A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/243947

Ramakrishnan, S., & Sathishkumar, T.P. (2019). Enhancing the Static and Dynamic Mechanical Behaviours of Vinyl Ester Matrix using Surface Modified Luffa Fibers. International Journal Of Recent Technology and Engineering, 8(3), 5785-5789, DOI:10.35940/ijrte.C4724.098319

Ramasamy, N., Arumugam, V., & Rajkumar, S. (2019). Surface modification of Kevlar fibre fabric and its influence on the properties of Kevlar/epoxy composites. Bulletin of Materials Science, 42(4), 1-9. DOI: https://doi.org/10.1007/s12034-019-1868-3

Ramasamy, N., Arumugam, V., & Sureshkumar, C. (2021). Effect of fiber surface modifications on the interfacial adhesion in Kevlar fiber reinforced polymer composites. Journal of Adhesion Science and Technology, 36(1), 54-74. DOI: https://doi.org/10.1080/01694243.2021.1911205

Ravi, S., Saravanan, K., Jayabalakrishnan, D., Prabhu, P., Suyamburajan, V., Jayaseelan, V., & Mayakkannan, A. V. (2021). Silane grafted nanosilica and aramid fibre-reinforced epoxy composite: dma, fatigue and dynamic loading behaviour. Silicon, 1-9.

Singh, T. J., & Samanta, S. (2015). Characterization of Kevlar fiber and its composites: a review. Materials Today: Proceedings, 2(4-5), 1381-1387. DOI: https://doi.org/10.1016/j.matpr.2015.07.057

Vijay Ananth, S., Jayaseelan, V., & Kumar, N. M. (2019). High temperature superplasticity and its deformation mechanism of AA6063/SiCp. Case Studies in Thermal Engineering, 14, 100479. DOI: https://doi.org/10.1016/j.csite.2019.100479

Vijay Ananth, S., Srimurugan, R., Jayaseelan, V., Geethan, A., & Xavier, J. F. (2020, October). Experimental investigation on superplastic forming behavior of AA 6063/SiCp using stir casting. In AIP Conference Proceedings (Vol. 2283, No. 1, p. 020118). AIP Publishing LLC. DOI: https://doi.org/10.1063/5.0025150

Wu, J., & Cheng, X. H. (2006). Effect of surface treatment on the mechanical and tribological performance of Kevlar pulp reinforced epoxy composites. Tribology Letters, 24(3), 195-199. DOI: http://dx.doi.org/10.1007/s11249-006-9138-0

Zareei, N., Geranmayeh, A., & Eslami-Farsani, R. (2019). Interlaminar shear strength and tensile properties of environmentally-friendly fiber metal laminates reinforced by hybrid basalt and jute fibers. Polymer Testing, 75, 205-212. DOI: ttp://dx.doi.org/10.1016/j.polymertesting.2019.02.002

Zhang, Y., Huang, Y., He, J., Wu, L., & Xu, Z. (2008). Influence of γ-ray radiation grafting on interfacial properties of aramid fibers and epoxy resin composites. Composite Interfaces, 15(6), 611-628. DOI: https://doi.org/10.1163/156855408785971281

Downloads

Published

2022-01-25

How to Cite

Francis Xavier Joseph, Sudeshkumar Moranahali Ponnusamy, M. P. Natarajan, Duraivelu, J. ., Veerasundaram, J. ., & Nallamuthu, R. . (2022). Interlaminar shear strength of chemically treated Kevlar/Cucurbitaceae fiber metal laminated hybrid composites. Journal of Current Science and Technology, 12(1), 102–109. Retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/328

Issue

Section

Research Article