In vitro evaluation of the intestinal cell adhesion, immunomodulatory effect, and cholesterol assimilation of the potential probiotic and postbiotic isolated from healthy Thai children
DOI:
https://doi.org/10.59796/jcst.V14N2.2024.32Keywords:
cytokine, cholesterol assimilation, human intestinal cell line, lactobacilli, Lactoplantibacillus postbiotic, probioticsAbstract
Several bacterial genera, including Lactobacillus, have been evaluated for their beneficial effects in humans. This study aimed to evaluate the “probiotic” and “postbiotic” potential of three bacterial strains: Lactobacillus oris RCEID28-3, Limosilactobacillus fermentum RCEID23-2, and Limosilactobacillus fermentum RCEID47-7. Probiotics are defined as live bacterial cells, whereas postbiotics are inactivated or killed probiotics. Probiotic potential was evaluated by assessing the adhesion ability of the Caco-2 and HT-29 cell lines, immunomodulatory effects, and cholesterol assimilation. Meanwhile, postbiotic potential was assessed by evaluating their immunomodulatory effects through measuring cytokine production in human peripheral blood mononuclear cells (PBMCs) using an enzyme-linked immunosorbent assay (ELISA). The human intestinal cell adhesion assay showed that all bacterial strains exhibited adhesion of more than 90% to both the Caco-2 and HT-29 cell lines, except for L. oris RCEID28-3. The highest cell adhesion level was observed in L. fermentum RCEID47-7. The cytokine production assay revealed that probiotic and postbiotic strains stimulated the production of three cytokines: IL-10, IFN- γ, and TNF-α, in PBMCs with the different cytokines, indicating the strain-dependent property. Moreover, cholesterol assimilation by live probiotics showed that all the strains, especially L. fermentum RCEID47-7, could reduce cholesterol levels. Therefore, this study provides scientific evidence to support the possibility of applying probiotics and their inactivated forms (postbiotics) in humans in the near future.
References
Alp, D., & Kuleaşan, H. (2019). Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing. World Journal of Microbiology and Biotechnology, 35(10), Article 156. https://doi.org/10.1007/s11274-019-2730-x
Arasu, K. A., & Rajasekar, T. (2024). Immunomodulatory Activity of Postbiotics from Lactobacillus. In D. Dharumadurai (Ed.), Postbiotics (pp. 181-186). Springer US. https://doi.org/10.1007/978-1-0716-3421-9_25
Ashraf, R., Vasiljevic, T., Day, S. L., Smith, S. C., & Donkor, O. N. (2014). Lactic acid bacteria and probiotic organisms induce different cytokine profile and regulatory T cells mechanisms. Journal of Functional Foods, 6, 395-409. https://doi.org/10.1016/j.jff.2013.11.006
Azad, M. A. K., Sarker, M., & Wan, D. (2018). Immunomodulatory Effects of Probiotics on Cytokine Profiles. BioMed Research International, 2018, Article 8063647. https://doi.org/10.1155/2018/8063647
Bazireh, H., Shariati, P., Azimzadeh Jamalkandi, S., Ahmadi, A., & Boroumand, M. A. (2020). Isolation of novel probiotic Lactobacillus and Enterococcus strains from human salivary and fecal sources. Frontiers in Microbiology, 11, Article 597946. https://doi.org/10.3389/fmicb.2020.597946
Benítez-Cabello, A., Torres-Maravilla, E., Bermúdez-Humarán, L., Langella, P., Martín, R., Jiménez-Díaz, R., & Arroyo-López, F. N. (2020). Probiotic Properties of Lactobacillus Strains Isolated from Table Olive Biofilms. Probiotics and Antimicrobial Proteins, 12(3), 1071-1082. https://doi.org/10.1007/s12602-019-09604-y
Buck, B. L., Altermann, E., Svingerud, T., & Klaenhammer, T. R. (2005). Functional Analysis of Putative Adhesion Factors in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology, 71(12), 8344-8351. https://doi.org/10.1128/AEM.71.12.8344-8351.2005
Chanput, W., Mes, J., Vreeburg, R. A., Savelkoul, H. F., & Wichers, H. J. (2010). Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating effects of food-derived compounds. Food & Function, 1(3), 254-261. https://doi.org/10.1039/c0fo00113a
Collado, M. C., Meriluoto, J., & Salminen, S. (2007). Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Letters in Applied Microbiology, 45(4), 454-460. https://doi.org/10.1111/j.1472-765X.2007.02212.x
Couper, K. N., Blount, D. G., & Riley, E. M. (2008). IL-10: the master regulator of immunity to infection. Journal of Immunology, 180(9), 5771-5777. https://doi.org/10.4049/jimmunol.180.9.5771
de Almada, C. N., Almada, C. N., Martinez, R. C. R., & Sant'Ana, A. S. (2016). Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends in Food Science & Technology, 58, 96-114. https://doi.org/10.1016/j.tifs.2016.09.011
Duary, R. K., Rajput, Y. S., Batish, V. K., & Grover, S. (2011). Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells. The Indian Journal of Medical Research,134(5), 664-671. https://doi.org/10.4103/0971-5916.90992
Garcia-Gonzalez, N., Battista, N., Prete, R., & Corsetti, A. (2021). Health-Promoting Role of Lactiplantibacillus plantarum Isolated from Fermented Foods. Microorganisms, 9(2), Article 349. https://doi.org/10.3390/microorganisms9020349
Hardy, H., Harris, J., Lyon, E., Beal, J., & Foey, A. D. (2013). Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients, 5(6), 1869-1912. https://doi.org/10.3390/nu5061869
Hassan, M. U., Nayab, H., Shafique, F., Williamson, M. P., Almansouri, T. S., Asim, N., ... & Akbar, N. (2020). Probiotic Properties of Lactobacillus helveticus and Lactobacillus plantarum Isolated from Traditional Pakistani Yoghurt. BioMed Research International, 2020, Article 8889198. https://doi.org/10.1155/2020/8889198
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., ... & Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66
Jung, E., Kong, S. Y., Ro, Y. S., Ryu, H. H., & Shin, S. D. (2022). Serum Cholesterol Levels and Risk of Cardiovascular Death: A Systematic Review and a Dose-Response Meta-Analysis of Prospective Cohort Studies. International Journal of Environmental Research and Public Health, 19(14), Article 8272. https://doi.org/10.3390/ijerph19148272
Kaur, I. P., Chopra, K., & Saini, A. (2002). Probiotics: potential pharmaceutical applications. European Journal of Pharmaceutical Sciences, 15(1), 1-9. https://doi.org/10.1016/s0928-0987(01)00209-3
Konyanee, A., Yotpanya, P., Panya, M., Engchanil, C., Suebwongsa, N., Namwat, W., ... & Lulitanond, V. (2019). Genome Sequence of Lactobacillus fermentum 47-7, a Good In Vitro Probiotic Strain Isolated from a Healthy Thai Infant. Microbiology Resource Announcements, 8(39), Article e01014-19. https://doi.org/10.1128/mra.01014-19
Lammers, K. M., Brigidi, P., Vitali, B., Gionchetti, P., Rizzello, F., Caramelli, E., ... & Campieri, M. (2003). Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunology & Medical Microbiology, 38(2), 165-172. https://doi.org/10.1016/S0928-8244(03)00144-5
Laparra, J. M., & Sanz, Y. (2009). Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Letters in Applied Microbiology, 49(6), 695-701. https://doi.org/10.1111/j.1472-765X.2009.02729.x
Leser, T. D., & Mølbak, L. (2009). Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Applied Microbiology International, 11(9), 2194-2206. https://doi.org/10.1111/j.1462-2920.2009.01941.x
Li, N., Russell, W. M., Douglas-escobar, M., Hauser, N., Lopez, M., & Neu, J. (2009). Live and heat-killed Lactobacillus rhamnosus GG: effects on proinflammatory and anti-inflammatory cytokines/chemokines in gastrostomy-fed infant rats. Pediatric Research, 66(2), 203-207. https://doi.org/10.1203/PDR.0b013e3181aabd4f
Lou, X., Xue, J., Shao, R., Mo, C., Wang, F., & Chen, G. (2023). Postbiotics as potential new therapeutic agents for sepsis. Burns Trauma, 11, Article tkad022. https://doi.org/10.1093/burnst/tkad022
Mirpuri, J., Sotnikov, I., Myers, L., Denning, T. L., Yarovinsky, F., Parkos, C. A., ... & Louis, N. A. (2012). Lactobacillus rhamnosus (LGG) regulates IL-10 signaling in the developing murine colon through upregulation of the IL-10R2 receptor subunit. PLoS One, 7(12), Article e51955. https://doi.org/10.1371/journal.pone.0051955
Nami, Y., Bakhshayesh, R. V., Manafi, M., & Hejazi, M. A. (2019). Hypocholesterolaemic activity of a novel autochthonous potential probiotic Lactobacillus plantarum YS5 isolated from yogurt. LWT, 111, 876-882. https://doi.org/10.1016/j.lwt.2019.05.057
Palaniyandi, S. A., Damodharan, K., Suh, J. W., & Yang, S. H. (2020). Probiotic Characterization of Cholesterol-Lowering Lactobacillus fermentum MJM60397. Probiotics Antimicrob Proteins, 12(3), 1161-1172. https://doi.org/10.1007/s12602-019-09585-y
Papizadeh, M., Nahrevanian, H., Rohani, M., Hosseini, S. N., & Shojaosadati, S. A. (2016). Lactobacillus rhamnosus Gorbach-Goldin (GG): A top well-researched probiotic strain. Journal of Medical Bacteriology, 5(5-6), 46-59.
Rudel, L. L., & Morris, M. D. (1973). Determination of cholesterol using o-phthalaldehyde. Journal of Lipid Research, 14(3), 364-366. https://doi.org/10.1016/S0022-2275(20)36896-6
Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M., ... & Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(9), 649-667. https://doi.org/10.1038/s41575-021-00440-6
Sanders, M. E. (2008). Probiotics: definition, sources, selection, and uses. Clinical Infectious Diseases, 46(Supplement_2), S58-S61. https://doi.org/10.1086/523341
Satish Kumar, R., Kanmani, P., Yuvaraj, N., Paari, K. A., Pattukumar, V., & Arul, V. (2011). Lactobacillus plantarum AS1 binds to cultured human intestinal cell line HT‐29 and inhibits cell attachment by enterovirulent bacterium Vibrio parahaemolyticus. Letters in Applied Microbiology, 53(4), 481-487. https://doi.org/10.1111/j.1472-765X.2011.03136.x
Schoenborn, J. R., & Wilson, C. B. (2007). Regulation of interferon-gamma during innate and adaptive immune responses. Advances in Immunology, 96, 41-101. https://doi.org/10.1016/s0065-2776(07)96002-2
Shi, N., Li, N., Duan, X., & Niu, H. (2017). Interaction between the gut microbiome and mucosal immune system. Military Medical Research, 4, Article 14. https://doi.org/10.1186/s40779-017-0122-9
Silva, M., Jacobus, N. V., Deneke, C., & Gorbach, S. L. (1987). Antimicrobial substance from a human Lactobacillus strain. Antimicrobial Agents and Chemotherapy, 31(8), 1231-1233. https://doi.org/10.1128/aac.31.8.1231
Soltani, S., Hammami, R., Cotter, P. D., Rebuffat, S., Said, L. B., Gaudreau, H., ... & Fliss, I. (2020). Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiology Reviews, 45(1), Article fuaa039. https://doi.org/10.1093/femsre/fuaa039
Tanojo, N., Citrashanty, I., Utomo, B., Listiawan, Y., Ervianti, E., Damayanti, & Sawitri, S. (2023). Oral postbiotics derived from Lactobacillus sp. in treatment of atopic dermatitis: a meta-analysis. Acta Dermatovenerologica Alpina, Pannonica, et Adriatica, 32(2), 41-47. https://doi.org/10.15570/actaapa.2023.9
Taranto, M. P., Sesma, F., Pesce de Ruiz Holgado, A., & de Valdez, G. F. (1997). Bile salts hydrolase plays a key role on cholesterol removal by Lactobacillus reuteri. Biotechnology Letters, 19(9), 845-847. https://doi.org/10.1023/A:1018373217429
Tomaro-Duchesneau, C., Jones, M. L., Shah, D., Jain, P., Saha, S., & Prakash, S. (2014). Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation. BioMed Research International, 2014. Article 380316. https://doi.org/10.1155/2014/380316
Tomaro-Duchesneau, C., Saha, S., Malhotra, M., Jones, M. L., Rodes, L., & Prakash, S. (2015). Lactobacillus fermentum NCIMB 5221 and NCIMB 2797 as cholesterol-lowering probiotic biotherapeutics: in vitro analysis. Beneficial Microbes, 6(6), 861-869. https://doi.org/10.3920/bm2015.0021
Tsilingiri, K., & Rescigno, M. (2013). Postbiotics: what else?. Beneficial Microbes, 4(1), 101-107. https://doi.org/10.3920/bm2012.0046
van Pijkeren, J. P., Canchaya, C., Ryan, K. A., Li, Y., Claesson, M. J., Sheil, B., ... & O'Toole, P. W. (2006). Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Applied and Environmental Microbiology, 72(6), 4143-4153. https://doi.org/10.1128/AEM.03023-05
Vélez, M. P., De Keersmaecker, S. C., & Vanderleyden, J. (2007). Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiology Letters, 276(2), 140-148. https://doi.org/10.1111/j.1574-6968.2007.00908.x
Wallace, T. D., Bradley, S., Buckley, N. D., & Green-Johnson, J. M. (2003). Interactions of lactic acid bacteria with human intestinal epithelial cells: effects on cytokine production. Journal of Food Protection, 66(3), 466-472. https://doi.org/10.4315/0362-028x-66.3.466
Wells, J. M. (2011). Immunomodulatory mechanisms of lactobacilli. Microbial Cell Factories, 10(Suppl 1), Article S17. https://doi.org/10.1186/1475-2859-10-s1-s17
Yeşilyurt, N., Yılmaz, B., Ağagündüz, D., & Capasso, R. (2021). Involvement of Probiotics and Postbiotics in the Immune System Modulation. Biologics, 1(2), 89-110. https://doi.org/10.3390/biologics1020006
Yotpanya, P., Panya, M., Engchanil, C., Suebwongsa, N., Namwat, W., Thaw, H., & Lulitanond, V. (2016). Probiotic characterization of lactic acid bacteria isolated from infants feces and its application for the expression of green fluorescent protein. Malaysian Journal of Microbiology, 12, 76-84. https://doi.org/10.21161/mjm.74915
Zheng, J., Wittouck, S., Salvetti, E., Franz, C., Harris, H. M. B., Mattarelli, P., Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782-2858. https://doi.org/10.1099/ijsem.0.004107
Downloads
Published
How to Cite
License
Copyright (c) 2024 Journal of Current Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.