Prostate-specific antigen (PSA) glycan-binding profile analysis based on enzyme-linked lectin assay (ELLA) and storage effect of assay components
Keywords:
glycoprofiling, lectin assay, MAA, PSA, sialic acid, SNA, storageAbstract
Changes in the prostate-specific antigen (PSA) glycosylation profile may be used to distinguish indolent from aggressive prostate cancer (PCa). This study aimed to obtain the glycan profiles of PSA isolated from a normal individual using the enzyme-linked lectin assay (ELLA) method. We used sialic acid-specific lectins (MAA I, MAA II and SNA) for PSA glycoprofiling and generated the binding curve of PSA-lectin interactions. Compared to MAA I and MAA II, Sambucus nigra agglutinin (SNA) had the highest binding (A450 = 3.59) with the normal individual PSA sample harbouring α2,6-sialic acid glycan used in this study. The binding signals for Maackia amurensis agglutinin (MAA) I were significant starting at 700 ng/mL PSA, implying that a small amount of α2,3-sialic acid glycan presented in the normal PSA. Binding saturation occurred at A450 = 3.60 and at a PSA concentration of 5 × 103 ng/mL (176 nM). In addition, the stability of assay components stored at room temperature (25 °C) for two months was assessed, and the results showed that the binding signals for PSA detection by SNA were still remarkably high (A450 = 2.37) at a PSA concentration of 1 µg/mL. Here, we established a simple and sensitive lectin-based assay for PSA glycoprofiling. The stability of the assay components during the storage test also revealed their potential to be utilised and stored for longer periods at room temperature.
References
Arcangeli, C. G., Smith, D. S., Ratliff, T. L., & Catalona, W. J. (1997). Stability of serum total and free prostate specific antigen under varying storage intervals and temperatures. Journal of Urology, 158(6), 2182-2187. DOI: 10.1016/S0022-5347(01)68191-6
Bhanushali, P. B., Badgujar, S. B., Tripathi, M. M., Gupta, S., Murthy, V., Krishnasastry, M. V., & Puri, C. P. (2016). Development of glycan specific lectin based immunoassay for detection of prostate specific antigen. International Journal of Biological Macromolecules, 86, 468-480. DOI: 10.1016/j.ijbiomac.2016.01.110
Bélanger, A., Van Halbeek, H., Graves, H. C., Grandbois, K., Stamey, T. A., Huang, L., ... & Labrie, F. (1995). Molecular mass and carbohydrate structure of prostate specific antigen: studies for establishment of an international PSA standard. The Prostate, 27(4), 187-197. DOI: 10.1002/pros.2990270403
Belicky, S., Černocká, H., Bertok, T., Holazova, A., Réblová, K., Paleček, E., ... & Ostatna, V. (2017). Label-free chronopotentiometric glycoprofiling of prostate specific antigen using sialic acid recognizing lectins. Bioelectrochemistry, 117, 89-94. DOI: 10.1016/j.bioelechem.2017.06.005
Bertok, T., Jane, E., Bertokova, A., Lorencova, L., Zvara, P., Smolkova, B., ... & Tkac, J. (2020). Validating fPSA Glycoprofile as a Prostate Cancer Biomarker to Avoid Unnecessary Biopsies and Re-Biopsies. Cancers, 12(10), 2988. DOI: 10.3390/cancers12102988
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. DOI: 10.3322/caac.21492
Catalona, W. J., Smith, D. S., Ratliff, T. L., Dodds, K. M., Coplen, D. E., Yuan, J. J., ... & Andriole, G. L. (1991). Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. New England Journal of Medicine, 324(17), 1156-1161. DOI: 10.1056/NEJM199104253241702
Damborský, P., Koczula, K. M., Gallotta, A., & Katrlík, J. (2016). Lectin-based lateral flow assay: proof-of-concept. The Analyst, 141(23), 6444-6448. DOI: 10.1039/c6an01746k
Drake, R. R., Jones, E. E., Powers, T. W., & Nyalwidhe, J. O. (2015). Altered glycosylation in prostate cancer. Advances in Cancer Research, 126, 345-382. DOI: 10.1016/bs.acr.2014.12.001
Dwek, M. V., Jenks, A., & Leathem, A. J. C. (2010). A sensitive assay to measure biomarker glycosylation demonstrates increased fucosylation of prostate specific antigen (PSA) in patients with prostate cancer compared with benign prostatic hyperplasia. Clinica Chimica Acta, 411(23-24), 1935-1939. DOI: 10.1016/j.cca.2010.08.009
Ferrer-Batallé, M., Llop, E., Ramírez, M., Aleixandre, R. N., Saez, M., Comet, J., ... & Peracaula, R. (2017). Comparative study of blood-based biomarkers, α2, 3-sialic acid PSA and PHI, for high-risk prostate cancer detection. International journal of molecular sciences, 18(4), 845. DOI: 10.3390/ijms18040845
Gratacós-Mulleras, A., Duran, A., Shehni, A. A., Ferrer-Batallé, M., Ramírez, M., Comet, J., ... & Peracaula, R. (2020). Characterisation of the main PSA glycoforms in aggressive prostate cancer. Scientific reports, 10(1), 1-14. DOI: 10.1038/s41598-020-75526-3
Gupta, S. K., Masinick, S., Garrett, M., & Hazlett, L. D. (1997). Pseudomonas aeruginosa lipopolysaccharide binds galectin-3 and other human corneal epithelial proteins. Infection and immunity, 65(7), 2747. DOI: 10.1128/iai.65.7.2747-2753.1997
Haga, Y., Uemura, M., Baba, S., Inamura, K., Takeuchi, K., Nonomura, N., & Ueda, K. (2019). Identification of multisialylated LacdiNAc structures as highly prostate cancer specific glycan signatures on PSA. Analytical chemistry, 91(3), 2247-2254. DOI: 10.1021/acs.analchem.8b04829
Hagiwara, K., Tobisawa, Y., Kaya, T., Kaneko, T., Hatakeyama, S., Mori, K., ... & Yoneyama, T. (2017). Wisteria floribunda agglutinin and its reactive-glycan-carrying prostate-specific antigen as a novel diagnostic and prognostic marker of prostate cancer. International journal of molecular sciences, 18(2), 261. DOI: 10.3390/ijms18020261
Kekki, H., Peltola, M., van Vliet, S., Bangma, C., van Kooyk, Y., & Pettersson, K. (2017). Improved cancer specificity in PSA assay using Aleuria aurantia lectin coated Eu-nanoparticles for detection. Clinical Biochemistry, 50(1-2), 54-61. DOI: 10.1016/j.clinbiochem.2016.06.015
Legardinier, S., Klett, D., Poirier, J. C., Combarnous, Y., & Cahoreau, C. (2005). Mammalian-like nonsialyl complex-type N-glycosylation of equine gonadotropins in Mimic™ insect cells. Glycobiology, 15(8), 776-790. DOI: 10.1093/glycob/cwi060
Li, Y., Tao, S. C., Bova, G. S., Liu, A. Y., Chan, D. W., Zhu, H., & Zhang, H. (2011). Detection and verification of glycosylation patterns of glycoproteins from clinical specimens using lectin microarrays and lectin-based immunosorbent assays. Analytical Chemistry, 83(22), 8509-8516. DOI: 10.1021/ac201452f
Liang, J., Yao, C., Li, X., Wu, Z., Huang, C., Fu, Q., ... & Tang, Y. (2015). Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosensors and Bioelectronics, 69, 128-134. DOI: 10.1016/j.bios.2015.02.026
Loeb, S., Sanda, M. G., Broyles, D. L., Shin, S. S., Bangma, C. H., Wei, J. T., ... & Catalona, W. J. (2015). The prostate health index selectively identifies clinically significant prostate cancer. The Journal of urology, 193(4), 1163-1169. DOI: 10.1016/j.juro.2014.10.121
Lu, S., Wang, X., Lu, Q., Hu, X., Uppal, N., Omenetto, F. G., & Kaplan, D. L. (2009). Stabilization of snzymes in silk films. Biomacromolecules, 10(5), 1032-1042. DOI: 10.1021/bm800956n
Meany, D. L., Zhang, Z., Sokoll, L. J., Zhang, H., & Chan, D. W. (2009). Glycoproteomics for prostate cancer detection: Changes in serum PSA glycosylation patterns. Journal of Proteome Research, 8(2), 613-619. DOI: 10.1021/pr8007539
Mohseni, S. R., Golsaz-Shirazi, F., Hosseini, M., Khoshnoodi, J., Bahadori, T., Judaki, M. A., ... & Shokri, F. (2019). Characterization of monoclonal and polyclonal antibodies recognizing prostate specific antigen: implication for design of a sandwich ELISA. Avicenna Journal of Medical Biotechnology, 11(1), 72.
Montoya, A., & Castell, J. (1987). Long-term storage of peroxidase-labelled immunoglobulins for use in enzyme immunoassay. Journal of immunological methods, 99(1), 13-20. DOI: 10.1016/0022-1759(87)90026-3
Oesterling, J. E., Jacobsen, S. J., Klee, G. G., Petterson, K., Piironen, T., Abrahamsson, P. A., ... & Lilja, H. (1995). Free, complexed and total serum prostate specific antigen: the establishment of appropriate reference ranges for their concentrations and ratios. The Journal of urology, 154(3), 1090-1095. DOI: 10.1016/S0022-5347(01)66984-2
Ohyama, C., Hosono, M., Nitta, K., Oh-eda, M., Yoshikawa, K., Habuchi, T., ... & Fukuda, M. (2004). Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiology, 14(8), 671-679. DOI: 10.1093/glycob/cwh071
Paul, B., Dhir, R., Landsittel, D., Hitchens, M. R., & Getzenberg, R. H. (2005). Detection of prostate cancer with a blood-based assay for early prostate cancer antigen. Cancer research, 65(10), 4097-4100. DOI: 10.1158/0008-5472
Peracaula, R., Tabarés, G., Royle, L., Harvey, D. J., Dwek, R. A., Rudd, P. M., & de Llorens, R. (2003). Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology, 13(6), 457-470. DOI: 10.1093/glycob/cwg041
Pettersson, K., Piironen, T., Seppälä, M., Liukkonen, L., Christensson, A., Matikainen, M. T., ... & Lilja, H. (1995). Free and complexed prostate-specific antigen (PSA): in vitro stability, epitope map, and development of immunofluorometric assays for specific and sensitive detection of free PSA and PSA-alpha 1-antichymotrypsin complex. Clinical chemistry, 41(10), 1480-1488. DOI: 10.1093/clinchem/41.10.1480
Piao, C. (2002). Immunotherapeutic approaches for prostate cancer: Optimization of antigens targeting dendritic cells. (Doctoral dissertation, University of Alberta, Canada).
Pihikova, D., Kasak, P., Kubanikova, P., Sokol, R., & Tkac, J. (2016). Aberrant sialylation of a prostate-specific antigen: Electrochemical label-free glycoprofiling in prostate cancer serum samples. Analytica chimica acta, 934, 72-79. DOI: 10.1016/j.aca.2016.06.043
Pihikova, D., Pakanova, Z., Nemcovic, M., Barath, P., Belicky, S., Bertok, T., ... & Tkac, J. (2016). Sweet characterisation of prostate specific antigen using electrochemical lectin‐based immunosensor assay and MALDI TOF/TOF analysis: Focus on sialic acid. Proteomics, 16(24), 3085-3095. DOI: 1 0.1002/pmic.201500463
Prakash, S., & Robbins, P. W. (2000). Glycotyping of prostate specific antigen. Glycobiology, 10(2), 173-176. DOI: 10.1093/glycob/10.2.173
Ramachandran, S., Fu, E., Lutz, B., & Yager, P. (2014). Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices. Analyst, 139(6), 1456-1462. DOI: 10.1039/C3AN02296J
Rawla, P. (2019). Epidemiology of prostate cancer. World Journal of Oncology, 10(2), 63-89. DOI: 10.14740/wjon1191
Sandhu, G. S., & Andriole, G. L. (2012). Overdiagnosis of prostate cancer. Journal of the National Cancer Institute - Monographs, 2012(45), 146-151. DOI: 10.1093/jncimonographs/lgs031
Shang, C., & Van Damme, E. J. M. (2014). Comparative analysis of carbohydrate binding properties of Sambucus nigra lectins and ribosome-inactivating proteins. Glycoconjugate Journal, 31(5), 345-354. DOI: 10.1007/s10719-014-9527-9
Sharon, N., & Lis, H. (2002). How proteins bind carbohydrates: Lessons from legume lectins. Journal of Agricultural and Food Chemistry, 50(22), 6586-6591. DOI: 10.1021/jf020190s
Sharon, N., & Lis, H. (2013). Lectins. In Encyclopedia of Biological Chemistry: Second Edition (pp. 701-705). London, UK: Elsevier Inc. DOI: 10.1016/B978-0-12-378630-2.00217-6
Sheng, L., He, Z., Chen, J., Liu, Y., Ma, M., & Cai, Z. (2017). The impact of N-glycosylation on conformation and stability of immunoglobulin Y from egg yolk. International Journal of Biological Macromolecules, 96, 129-136. DOI: 10.1016/j.ijbiomac.2016.12.043
Siegert, N., Tolkach, A., & Kulozik, U. (2012). The pH-dependent thermal and storage stability of glycosylated caseinomacropeptide. LWT - Food Science and Technology, 47(2), 407-412. DOI: 10.1016/j.lwt.2012.02.001
Sonawane, M. D., Nimse, S. B., Song, K.-S., & Kim, T. (2016). Detection, quantification, and profiling of PSA: current microarray technologies and future directions. RSC Advances, 6(9), 7599-7609. DOI: 10.1039/c5ra20313a
Thompson, R., Creavin, A., O’Connell, M., O’Connor, B., & Clarke, P. (2011). Optimization of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis. Analytical Biochemistry, 413(2), 114-122. DOI: 10.1016/j.ab.2011.02.013
Vlaeminck-Guillem, V., Ruffion, A., André, J., Devonec, M., & Paparel, P. (2010). Urinary Prostate Cancer 3 Test: Toward the Age of Reason? In Urology (Vol. 75, Issue 2, pp. 447–453). Urology, 75(2), 447-453. DOI: 10.1016/j.urology.2009.03.046
Wei, J. T., Feng, Z., Partin, A. W., Brown, E., Thompson, I., Sokoll, L., ... & Sanda, M. G. (2014). Can urinary PCA3 supplement PSA in the early detection of prostate cancer?. Journal of Clinical Oncology, 32(36), 4066. DOI: 10.1200/JCO.2013.52.8505
Wenzel, T. (2021). Beer’s Law. Retrieved May 22, 2021, from https://chem.libretexts.org/@go/page/111324
Woodrum, D., French, C., & Shamel, L. B. (1996). Stability of free prostate-specific antigen in serum samples under a variety of sample collection and sample storage conditions. Urology, 48(6), 33-39. DOI: 10.1016/S0090-4295(96)00607-3
Wu, A. M., & Liu, J. H. (2019). Lectins and ELLSA as powerful tools for glycoconjugate recognition analyses. Glycoconjugate Journal, 36(2), 175-183. DOI: 10.1007/s10719-019-09865-3
Yoneyama, T., Ohyama, C., Hatakeyama, S., Narita, S., Habuchi, T., Koie, T., ... & Tobisawa, Y. (2014). Measurement of aberrant glycosylation of prostate specific antigen can improve specificity in early detection of prostate cancer. Biochemical and Biophysical Research Communications, 448(4), 390-396. DOI: 10.1016/j.bbrc.2014.04.107
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.