Brillouin amplification in compound (AIIIBV and AIIBVI) semiconductors: effects of piezoelectricity, doping and external magnetostatic field

Authors

  • Arun Kumar Department of Physics, Baba Mastnath University, AsthalBohar – 124021 (Rohtak) India
  • Sunita Dahiya Department of Physics, Baba Mastnath University, AsthalBohar – 124021 (Rohtak) India
  • Navneet Singh Department of Physics, Rajiv Gandhi Government College for Women, Bhiwani-127021, India
  • Manjeet Singh Department of Physics, Government College, Matanhail – 124106 (Jhajjar) India

Keywords:

AIIIBV and AIIBVI semiconductors, Brillouin cell efficiency, Laser-semiconductor interactions, stimulated Brillouin amplification

Abstract

In this paper, a theoretical study describing stimulated Brillouin amplification in compound (AIIIBV and AIIBVI) semiconductors is explored.  The effects of piezoelectric coefficient, free carrier concentration, and applied magnetic field on the threshold intensity for exciting the stimulated Brillouin amplification and the parameters characterizing stimulated Brillouin amplification, viz. stimulated Brillouin amplification coefficient, transmitted intensity of first-order Brillouin scattered Stokes mode, and Brillouin cell efficiency of the Brillouin cell are estimated.  Numerical analysis is made for three different Brillouin cells consisting of n-InSb, n-GaAs and n-CdS at 77K illuminated by a nanosecond pulsed CO2 laser.  Endeavors are coordinated towards determining the appropriate values of free carrier (doping) concentration and magnetostatic field to improve the parameters characterizing stimulated Brillouin amplification, at smaller excitation intensity, and to establish the suitability of Brillouin cells consisting of compound (AIIIBV and AIIBVI) semiconductors as hosts for manufacture of Brillouin amplifiers and Brillouin oscillators.

References

Adachi, S. (1985). GaAs, AlAs, and Al x Ga1− x As: Material parameters for use in research and device applications. Journal of Applied Physics, 58(3), R1-R29. DOI: 10.1063/1.336070

Bai, Z., Yuan, H., Liu, Z., Xu, P., Gao, Q., Williams, R. J., ... & Lu, Z. (2018). Stimulated Brillouin scattering materials, experimental design and applications: A review. Optical Materials, 75, 626-645. DOI: 10.1016/j.optmat.2017.10.035

Bao, X., & Chen, L. (2012). Recent progress in distributed fiber optic sensors. sensors, 12(7), 8601-8639. DOI: 10.3390/s120708601

Bhan, S., Singh, H. P., Kumar, V., & Singh, M. (2019). Low threshold and high reflectivity of optical phase conjugate mode in transversely magnetized semiconductors. Optik, 184, 464-472. DOI: 10.1016/j.ijleo.2019.04.106

Boggess, T., Smirl, A., Moss, S., Boyd, I., & Van Stryland, E. (1985). Optical limiting in GaAs. IEEE journal of quantum electronics, 21(5), 488-494. DOI: 10.1109/JQE.1985.1072688

Boyd, R.W. (2008). Nonlinear Optics, Third Edition. New York, USA: Academic Press.

Brignon, A., & Jean-Pierre, H. (2012). Phase Conjugate Laser Optics. New York, USA: John Wiley & Sons.

Chefranov, S. G., & Chefranov, A. S. (2020). Hydrodynamic methods and exact solutions in applications to the electromagnetic field theory in medium. In: Nonlinear Optics – Novel Results in Field Theory in Medium. Lembrikov, B. (ed). Intechopen, UK.

Damzen, M. J., & Hutchinson, M. H. R. (1983). High-efficiency laser-pulse compression by stimulated Brillouin scattering. Optics letters, 8(6), 313-315. DOI: 10.1364/OL.8.000313

Dubey, S., Paliwal, A., & Ghosh, S. (2019). Transient amplification characteristics of frequency modulated wave in semiconductor plasmas. Chinese Journal of Physics, 61(5), 227-234. DOI: 10.1016/j.cjph.2019.08.010

Gahlawat, J., Singh, M., & Dahiya, S. (2021). Piezoelectric and electrostrictive contributions to optical parametric amplification of acoustic phonons in magnetized doped III-V semiconductors. J. Optoelectron. Journal of Optoelectronics and Advanced Materials, 23(3-4), 183-192.

Ghosh, S., Sharma, G. R., Khare, P., & Salimullah, M. (2004). Modified interactions of longitudinal phonon–plasmon in magnetized piezoelectric semiconductor plasmas. Physica B: Condensed Matter, 351(1-2), 163-170. DOI: 10.1016/j.physb.2004.06.001

Gökhan, F. S., Göktaş, H., & Sorger, V. J. (2018). Analytical approach of Brillouin amplification over threshold. Applied optics, 57(4), 607-611. DOI: 10.1364/AO.57.000607

Guo, Q., Lu, Z., & Wang, Y. (2010). Highly efficient Brillouin amplification of strong Stokes seed. Applied Physics Letters, 96(22), 221107. DOI: 10.1063/1.3435385

Gupta, P. K., & Sen, P. K. (2001). Stimulated Brillouin scattering in n-type III-V piezoelectric semiconductors. Journal of Nonlinear Optical Physics & Materials, 10(2), 265-278. DOI: 10.1142/S0218863501000590

Hon, D. T. (1982). Applications of wavefront reversal by stimulated Brillouin scattering. Optical Engineering, 21(2), 252-256. DOI: 10.1117/12.7972890

Kittlaus, E. A., Shin, H., & Rakich, P. T. (2016). Large Brillouin amplification in silicon. Nature Photonics, 10(7), 463-467. DOI: 10.1038/nphoton.2016.112

Kumari, P., & Sharma, B. S. (2021). Hot carrier effects on real and imaginary parts of Brillouin susceptibilities of semiconductor magneto-plasmas. Journal of Current Science and Technology, 11(3), 412-424.

Kruer, M., Esterowitz, L., Bartoli, F., & Allea, R. (1977). The role of carrier diffusion in laser damage of semiconductor materials. In: Laser Induced Damage in Optical Materials, (eds.) Glass, A.J.,& Guenther, A.H. NBS Special Publication No. 509, Washington, pp 473-480.

Meyer, J. R., Bartoli, F. J., & Kruer, M. R. (1980). Optical heating in semiconductors. Physical Review B, 21(4), 1559. DOI: 10.1103/PhysRevB.21.1559

Mokkapati, S., & Jagadish, C. (2009). III-V compound SC for optoelectronic devices. Materials Today, 12(4), 22-32. DOI: 10.1016/S1369-7021(09)70110-5

Omatsu, T., Kong, H. J., Park, S., Cha, S., Yoshida, H., Tsubakimoto, K., ... & Gao, W. (2012). The current trends in SBS and phase conjugation. Laser and Particle Beams, 30(1), 117-174. DOI: 10.1017/S0263034611000644

Perkins, L. J., Betti, R., LaFortune, K. N., & Williams, W. H. (2009). Shock ignition: A new approach to high gain inertial confinement fusion on the national ignition facility. Physical review letters, 103(4), 045004. DOI: 10.1103/PhysRevLett.103.045004

Salimullah, M., Sharma, R. R., & Tripathi, V. K. (1980). Stimulated Brillouin scattering of laser radiation in a piezoelectric semiconductor in the presence of a magnetic field. Journal of Physics D: Applied Physics. 13(2), 117-125. DOI: 10.1088/0022-3727/13/2/008

Schmitt, A. J., Bates, J. W., Obenschain, S. P., Zalesak, S. T., & Fyfe, D. E. (2010). Shock ignition target design for inertial fusion energy. Physics of Plasmas, 17(4), 042701. DOI: 10.1063/1.3385443

Scott, A. M., & Ridley, K. D. (1989). A review of Brillouin-enhanced four-wave mixing. IEEE journal of quantum electronics, 25(3), 438-459. DOI: 10.1109/3.18560

Sharma, G., & Ghosh, S. (2002). Stimulated Brillouin scattering in a magnetoactive III–V semiconductor: effects of carrier heating. Physica B: Condensed Matter, 322(1-2), 42-50. DOI: 10.1103/PhysRevB.47.16590

Sheng, L., Ba, D., & Lu, Z. (2019). Imaging enhancement based on stimulated Brillouin amplification in optical fiber. Optics express, 27(8), 10974-10980. DOI: 10.1364/OE.27.010974

Shimizu, K., Horiguchi, T., Koyamada, Y., & Kurashima, T. (1993). Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber. Optics letters, 18(3), 185-187. DOI: 10.1364/OL.18.000185

Simoda, K. (1982). Introduction to Laser Physics, Springer-Verlag, Berlin, pp. 160-166.

Singh, M., & Aghamkar, P. (2008). Mechanism of phase conjugation via stimulated Brillouin scattering in narrow band gap semiconductors. Optics communications, 281(5), 1251-1255. DOI: 10.1016/j.optcom.2007.10.102

Singh, M., Aghamkar, P., & Sen, P. K. (2007). Effect of doping on stimulated Brillouin scattering in piezoelectric magnetized III-V semiconductors. Indian Journal of Pure and Applied Physics, 45(6), 517-523.

Singh, M., Aghamkar, P., Kishore, N., & Sen, P. K. (2008). Nonlinear absorption and refractive index of Brillouin scattered mode in piezoelectric semiconductor plasmas by an applied magnetic field. Optics & Laser Technology, 40(1), 215-222. DOI: 10.1016/j.optlastec.2007.02.001

Singh, M., & Singh, M. (2021). Piezoelectric Contributions to Optical Parametric Amplification of Acoustical Phonons in Magnetized Doped III–V Semiconductors. Iranian Journal of Science and Technology, Transactions A: Science, 45(1), 373-382. DOI: 10.1007/s40995-020-00994-1

Smith, D. W., Atkins, C. G., Cotter, D., & Wyatt, R. (1986). Application of Brillouin amplification in coherent optical transmission, Proc. Opt. Fiber Commun. WE-3, Atlanta Georgia, United States.

Sweeney, S. J., & Mukherjee, J. (2017). Optoelectronic Devices and Materials. In: Kasap, S. & Capper P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks, Springer, Cham.

Terra, O., Grosche, G., & Schnatz, H. (2010). Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber. Optics express, 18(15), 16102-16111.

Toudert, J., & Serna, R. (2017). Interband transitions in semi-metals, semiconductors, and topological insulators: a new driving force for plasmonics and nanophotonics. Optical Materials Express, 7(7), 2299-2325. DOI: 10.1364/OME.7.002299

Trines, R. M. G. M., Alves, E. P., Webb, E., Vieira, J., Fiúza, F., Fonseca, R. A., ... & Bingham, R. (2020). New criteria for efficient Raman and Brillouin amplification of laser beams in plasma. Scientific reports, 10(1), 1-10. DOI: 10.1038/s41598-020-76801-z

Uzma, C., Zeba, I., Shah, H. A., & Salimullah, M. (2009). Stimulated Brillouin scattering of laser radiation in a piezoelectric semiconductor: Quantum effect. Journal of Applied Physics, 105(1), 013307. DOI: 10.1063/1.3050340

Velchev, I., & Ubachs, W. (2001). Higher-order stimulated Brillouin scattering with nondiffracting beams. Optics letters, 26(8), 530-532. DOI:10.1364/ol.26.000530

Williams, D., Bao, X., & Chen, L. (2014). Characterization of high nonlinearity in Brillouin amplification in optical fibers with applications in fiber sensing and photonic logic. Photonics Research, 2(1), 1-9. DOI: 10.1364/PRJ.2.000001

Wolff, C., Stiller, B., Eggleton, B. J., Steel, M. J., & Poulton, C. G. (2017). Cascaded forward Brillouin scattering to all Stokes orders. New Journal of Physics, 19(2), 023021.

Wu, F. F., Khizhnyak, A., & Markov, V. (2010). A high Brillouin amplification using liquid fluorocarbon, Proc. SPIE 7582, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications IX, 75821J.

Yang, F., Gyger, F., & Thevenaz, L. (2020). Giant Brillouin amplification in gas using hollow-core waveguides. Proc. CLEO, Paper ID: SF2P.

You, J. W., Bongu, S. R., Bao, Q., & Panoiu, N. C. (2019). Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects. Nanophotonics, 8(1), 63-97. DOI: 10.1515/nanoph-2018-0106

Downloads

Published

2022-01-25

How to Cite

Kumar, . A., Dahiya, S. ., Singh, N. ., & Singh, M. . (2022). Brillouin amplification in compound (AIIIBV and AIIBVI) semiconductors: effects of piezoelectricity, doping and external magnetostatic field. Journal of Current Science and Technology, 12(1), 61–78. retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/323

Issue

Section

Research Article