Acute Toxicity, Analgesic, and Anti-inflammatory Activities of Folk Thai Herbal Medicine: Yafon Formula

Authors

  • Tipsuchon Aiamsa-ard Department of Pharmacology, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
  • Chaowalit Monton Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
  • Napaporn Lakkana Department of Pharmacology, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand

DOI:

https://doi.org/10.59796/jcst.V14N2.2024.33

Keywords:

Yafon, analgesic, anti-inflammatory, acute toxicity, herbal formulation

Abstract

Yafon (YF), a formula composed of 14 herbal constituents, has been used in folk Thai herbal medicine to treat various indications, including pain relief, antipyretics, and anti-inflammatory properties. Nevertheless, this formula lacks adequate toxicological and efficacy data. Hence, this study aims to assess the safety and efficacy of YF in animal models. The study on acute oral toxicity was conducted by the Organization for Economic Co-operation and Development (OECD) number 420 guidelines. The results demonstrated that the administration of YF at a high dose of 2000 mg/kg did not result in fatality or exhibit any toxicity. The analgesic effect of YF in mice was investigated using the acetic acid-induced writhing test and the formalin test. The anti-inflammatory activity of YF was assessed in rats using the carrageenan-induced paw edema test. This investigation employed YF doses of 200, 400, and 800 mg/kg/day. The study found that all YF doses reduced writhing in the acetic acid, and YF doses of 400 and 800 mg/kg/day reduced the licking time in the late phase of the formalin test. In addition, all YF doses effectively suppressed paw edema in the carrageenan-induced paw edema test. This study demonstrated that the YF formula showed no acute toxicity and possessed acute anti-inflammatory and analgesic effects by blocking pain signals originating from the peripheral nervous system. These findings provided empirical evidence supporting the use of YF formula as an analgesic and anti-inflammatory agent.

References

Aiamsa-Ard, T., & Phetmanee, T. (2021). Analgesic, anti-inflammatory, and antihyperuricemic activities of a Thai herbal remedy. The Thai Journal of Pharmaceutical Sciences, 45(4), 235–241.

Ali, M. A., & Kravitz, A. V. (2018). Challenges in quantifying food intake in rodents. Brain Research, 1693, 188–191. https://doi.org/10.1016/j.brainres.2018.02.04

Bhandare, A. M., Kshirsagar, A. D., Vyawahare, N. S., Hadambar, A. A., & Thorve, V. S. (2010). Potential analgesic, anti-inflammatory and antioxidant activities of hydroalcoholic extract of Areca catechu L. nut. Food and Chemical Toxicology, 48(12), 3412-3417. https://doi.org/10.1016/j.fct.2010.09.013

Bhukya, B., Anreddy, R. N. R., William, C. M., & Gottumukkala, K. M. (2009). Analgesic and anti-inflammatory activities of leaf extract of Kydia calycina Roxb. A Journal of the Bangladesh Pharmacological Society, 4(2), 101–104. https://doi.org/10.3329/bjp.v4i2.2112

Bindu, S., Mazumder, S., & Bandyopadhyay, U. (2020). Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochemical Pharmacology, 180, 1–21. https://doi.org/10.1016/j.bcp.2020.114147

Boonyarikpunchai, W., Sukrong, S., & Towiwat, P. (2014). Antinociceptive and anti-inflammatory effects of rosmarinic acid isolated from Thunbergia laurifolia Lindl. Pharmacology Biochemistry and Behavior, 124, 67–73. https://doi.org/10.1016/j.pbb.2014.05.004

Brooks, P. M., & Day, R. O. (1991). Nonsteroidal anti-inflammatory drugs-differences and similarities. New England Journal of Medicine, 324(24), 1716–1725. https://doi.org/10.1056/NEJM199106133242407

Charoenying, T., Lomwong, K., Boonkrong, P., & Kruanamkam, W. (2024). Therapeutic potential of topical cannabis for the treatment of psoriasis: a preliminary clinical evaluation of two different formulations. Journal of Current Science and Technology, 14(1), Article 6. https://doi.org/10.59796/jcst.V14N1.2024.6

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., ... & Zhao, L. (2018). Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 9(6), 7204–7218. https://doi.org/10.18632/oncotarget.23208

Cheng, J., Yi, X., Chen, H., Wang, Y., & He, X. (2017). Anti-inflammatory phenylpropanoids and phenolics from Ficus hirta Vahl. Fitoterapia, 121, 229–234. https://doi.org/10.1016/j.fitote.2017.07.018

Dantas, L. L. S. F. R., Fonseca, A. G., Pereira, J. R., Furtado, A. A., Gomes, P. A. T. M., Fernandes-Pedrosa, M. F., ... & Lemos, T. M. A. M. (2020). Anti-inflammatory and antinociceptive effects of the isatin derivative (Z)-2-(5-chloro-2-oxoindolin-3-ylidene)-N-phenyl-hydrazinecarbothioamide in mice. Brazilian Journal of Medical and Biological Research, 53(10), 1–8. https://doi.org/10.1590/1414-431X202010204

de Oliveira Júnior, R. G., Ferraz, C. A. A., Silva, J. C., De Oliveira, A. P., Diniz, T. C., e Silva, M. G., ... & Almeida, J. R. G. D. S. (2017). Antinociceptive effect of the essential oil from Croton conduplicatus Kunth (Euphorbiaceae). Molecules, 22(6), 2–14. https://doi.org/10.3390/molecules22060900

Dietze, S., Lees, K. R., Fink, H., Brosda, J., & Voigt, J. P. (2016). Food deprivation, body weight loss and anxiety-related behavior in rats. Animals, 6(1), 1–14. https://doi.org/10.3390/ani6010004

UNECE. (2023). Globally Harmonized System of Classification and Labelling of Chemicals (GHS Rev. 10, 2023). Retrieved April 11, 2023, from https://unece.org/transport/dangerousgoods/ghs-rev10-2023

Hamm, J., Allen, D., Ceger, P., Flint, T., Lowit, A., O'Dell, L., ... & Kleinstreuer, N. (2021). Performance of the GHS mixtures equation for predicting acute oral toxicity. Regulatory Toxicology and Pharmacology, 125, Article 105007. https://doi.org/10.1016/j.yrtph.2021.105007

Hosokawa, A., Sumino, M., Nakamura, T., Yano, S., Sekine, T., Ruangrungsi, N., ... & Ikegami, F. (2004). A new lignan from Balanophora abbreviata and inhibition of lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression. Chemical and Pharmaceutical Bulletin, 52(10), 1265-1267. https://doi.org/10.1248/cpb.52.1265

Karmaus, A. L., Mansouri, K., To, K. T., Blake, B., Fitzpatrick, J., Strickland, J., ... & Kleinstreuer, N. (2022). Evaluation of variability across rat acute oral systemic toxicity studies. Toxicological Sciences, 188(1), 34-47. https://doi.org/10.1093/toxsci/kfac042

Karole, S., Shrivastava, S., Thomas, S., Soni, B., Khan, S., Dubey, J., ... & Jain, D. K. (2019). Polyherbal formulation concept for synergic action: a review. Journal of Drug Delivery and Therapeutics, 9(1-s), 453-466. https://doi.org/10.22270/jddt.v9i1-s.2339

Kidd, B. L., & Urban, L. A. (2001). Mechanisms of inflammatory pain. British Journal of Anaesthesia, 87(1), 3–11. https://doi.org/10.1093/bja/87.1.3

Lee, J. A., Shin, J. Y., Hong, S. S., Cho, Y. R., Park, J. H., Seo, D. W., ... & Ahn, E. K. (2022). Tetracera loureiri extract regulates lipopolysaccharide-induced inflammatory response via Nuclear Factor-κB and Mitogen Activated Protein Kinase signaling pathways. Plants, 11(3), Article 284. https://doi.org/10.3390/plants11030284

Likhitwitayawuid, K., Sawasdee, K., & Kirtikara, K. (2002). Flavonoids and stilbenoids with COX-1 and COX-2 inhibitory activity from Dracaena loureiri. Planta Medica, 68(09), 841-843. https://doi.org/10.1055/s-2002-34403

Low, B., Das, P. K., & Chan, K. (2014). Acute, reproductive toxicity and two‐generation teratology studies of a standardized quassinoid‐rich extract of Eurycoma longifolia Jack in Sprague–Dawley rats. Phytotherapy Research, 28(7), 1022–1029. https://doi.org/10.1002/ptr.5094

Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428–435. https://doi.org/10.1038/nature07201

Modlinska, K., Stryjek, R., & Pisula, W. (2015). Food neophobia in wild and laboratory rats (multi-strain comparison). Behavioural Processes, 113, 41-50. https://doi.org/10.1016/j.beproc.2014.12.005

Nair, A., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7(2), 27–31. https://doi.org/10.4103/0976-0105.177703

Nanna, U., Chiruntanat, N., Jaijoy, K., Rojsanga, P., & Sireeratawong, S. (2017). Effect of Thunbergia laurifolia Lindl. extract on anti-inflammatory, analgesic and antipyretic activity. Journal of the Medical Association of Thailand, 100(6), S98–S106.

do Nascimento, M. F., Costa, W. K., de Oliveira Farias, J. C. R., Navarro, D. M. D. A. F., da Silva, M. V., Paiva, P. M. G., ... & Napoleão, T. H. (2024). Essential oil from leaves of Croton blanchetianus Baill does not present acute oral toxicity, has antigenotoxic action and reduces neurogenic and inflammatory nociception in mice. Journal of Ethnopharmacology, 318, Article 116908. https://doi.org/10.1016/j.jep.2023.116908

OECD. (2002). Test No. 420: Acute Oral Toxicity - Fixed Dose Procedure. https://doi.org/10.1787/9789264070943-en

Parasuraman, S. (2011). Toxicological screening. Journal of Pharmacology & Pharmacotherapeutics, 2(2), 74-79. https://doi.org/10.4103/0976-500X.81895

Pinheiro, B. G., Silva, A. S. B., Souza, G. E. P., Figueiredo, J. G., Cunha, F. Q., Lahlou, S., ... & Sousa, P. J. C. (2011). Chemical composition, antinociceptive and anti-inflammatory effects in rodents of the essential oil of Peperomia serpens (Sw.) Loud. Journal of Ethnopharmacology, 138(2), 479-486. https://doi.org/10.1016/j.jep.2011.09.037

Posridee, K., Oonsivilai, A., & Oonsivilai, R. (2022). Acute and sub-chronic toxicity study of Rang Chuet (Thunbergia laurifolia Lindl.) extracts and its antioxidant activities. Toxicology Reports, 9, 2000–2017. https://doi.org/10.1016/j.toxrep.2022.11.002

Reanmongkol, W., Subhadhirasakul, S., & Bouking, P. (2003). Antinociceptive and antipyretic activities of extracts and fractions from Dracaena loureiri in experimental animals. Songklanakarin Journal Science of Technology, 25(4), 467–476.

Ricciotti, E., & Fitzgerald, G. A. (2011). Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(5), 986–1000. https://doi.org/10.1161/ATVBAHA.110.207449

Shin, J.-W., Seol, I.-C., & Son, C.-G. (2010). Interpretation of animal dose and human equivalent dose for drug development. The Journal of Korean Oriental Medicine, 31(3), 1-7.

Sittiprom, O., Taengvattachote, Y., & Sengsunt, P. (2023). Effectiveness of The Modified Formula of Ya-Tha-Pra-Sen on Relieving Neck and Shoulder Muscle Pain: Clinical Randomize Control Trial. Journal of Current Science and Technology, 13(3), 542–550. https://doi.org/10.59796/jcst.V13N3.2023.354

Strickland, J., Clippinger, A. J., Brown, J., Allen, D., Jacobs, A., Matheson, J., ... & Casey, W. (2018). Status of acute systemic toxicity testing requirements and data uses by U.S. regulatory agencies. Regulatory Toxicology and Pharmacology, 94, 183–196. https://doi.org/10.1016/j.yrtph.2018.01.022

Su, S., Wang, T., Duan, J. A., Zhou, W., Hua, Y. Q., Tang, Y. P., ... & Qian, D. W. (2011). Anti-inflammatory and analgesic activity of different extracts of Commiphora myrrha. Journal of Ethnopharmacology, 134(2), 251–258. https://doi.org/10.1016/j.jep.2010.12.003

Sudsai, T., & Plaingam, W. (2019, April 296). Acute toxicity study of the extracts from Bauhinia strychnifolia in Swiss albino mice [Conference presentation]. RSU National research conference 2019, Pathum Thani, Thailand. https://doi.org/10.14458/RSU.res.2019.248

Taher, Y. A., Samud, A. M., El-Taher, F. E., Ben-Hussin, G., Elmezogi, J. S., Al-Mehdawi, B. F., & Salem, H. A. (2015). Experimental evaluation of anti-inflammatory, antinociceptive and antipyretic activities of clove oil in mice. Libyan Journal of Medicine, 10(1), Article 28685. https://doi.org/10.3402/ljm.v10.28685

Thongphasuk, P. & Limsitthichaikoon, S. (2023). Feasibility study of Neptunia javanicaMiq. extract as an alternative medicine for wound healing. Journal of Current Science and Technology, 13(3), 672-682. https://doi.org/10.59796/jcst.V13N3.2023.691

Utaipan, T., Suksamrarn, A., Kaemchantuek, P., Chokchaisiri, R., Stremmel, W., Chamulitrat, W., & Chunglok, W. (2018). Diterpenoid trigonoreidon B isolated from Trigonostemon reidioides alleviates inflammation in models of LPS-stimulated murine macrophages and inflammatory liver injury in mice. Biomedicine & Pharmacotherapy, 101, 961–971. https://doi.org/10.1016/j.biopha.2018.02.144

Wen, J., Xu, Z., Ma, X., & Zhao, Y. (2022). Wound healing effects of Dracontomelon dao on bacterial infection wounds in rats and its potential mechanisms under simulated space environment. Evidence-Based Complementary and Alternative Medicine, 2022, 1-15. https://doi.org/10.1155/2022/4593201

Winter, C. A., Risley, E. A., & Nuss, G. W. (1962). Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine, 111(3), 544–547. https://doi.org/10.3181/00379727-111-27849

Yin, Z.-Y., Li, L., Chu, S.-S., Sun, Q., Ma, Z.-L., & Gu, X.-P. (2016). Antinociceptive effects of dehydrocorydaline in mouse models of inflammatory pain involve the opioid receptor and inflammatory cytokines. Scientific Reports, 6(1), Article 27129. https://doi.org/10.1038/srep27129

Zhang, Y., Zhao, W., Ruan, J., Wichai, N., Li, Z., Han, L., Zhang, Y., & Wang, T. (2020). Anti-inflammatory canthin-6-one alkaloids from the roots of Thailand Eurycoma longifolia Jack. Journal of Natural Medicines, 74, 804–810. https://doi.org/10.1007/s11418-020-01433-6

Zhao, L., Li, Y., Yang, S., Zhang, P., & Wang, J. (2017). Anti-nociceptive effect of total alkaloids isolated from the seeds of Areca catechu L (Arecaceae) in mice. Tropical Journal of Pharmaceutical Research, 16(2), 363–369. https://doi.org/10.4314/tjpr.v16i2.15

Downloads

Published

2024-05-02

How to Cite

Aiamsa-ard, T., Monton, C., & Lakkana, N. (2024). Acute Toxicity, Analgesic, and Anti-inflammatory Activities of Folk Thai Herbal Medicine: Yafon Formula. Journal of Current Science and Technology, 14(2), Article 33. https://doi.org/10.59796/jcst.V14N2.2024.33

Issue

Section

Research Article

Categories