Practical applications of peripheral blood mononuclear cells (PBMCs) in immunotherapy preclinical research
Keywords:
cryopreservation, microfluidics, PBMC isolation, peripheral blood mononuclear cells (PBMCs), preclinical research, virusesAbstract
In recent years, we have faced more and more new diseases caused by viruses and opportunistic infections. There are still no preclinical models that would improve the evaluation of the proposed therapies and the immune system's response to drugs and infections. That is why the models based on the peripheral blood mononuclear cells (PBMCs) have a great potential to evaluate the human body’s cellular, cytotoxic and humoral responses to vaccines and drugs. At the same time, studying these models may be the next stage of preclinical research, allowing for the initial verification of the tested factors before starting animal testing. This review has compiled the key information on the isolation, culture, cryopreservation, and application potential of PBMCs in the preclinical research focusing on viral pathogenesis and therapy.
References
Akbaba, T. H., Akkaya-Ulum, Y. Z., Demir, S., Ozen, S., & Balci-Peynircioglu, B. (2022). The pyrin inflammasome aggravates inflammatory cell migration in patients with familial Mediterranean fever. Pediatric Research, 91(6), 1399-1404. https://doi.org/10.1038/s41390-021-01559-7
Alvarez-Rueda, N., Rouges, C., Touahri, A., Misme-Aucouturier, B., Albassier, M., & Pape, P. L. (2020). In vitro immune responses of human PBMCs against Candida albicans reveals fungal and leucocyte phenotypes associated with fungal persistence. Scientific Reports, 10(1), 6211. https://doi.org/10.1038/s41598-020-63344-6
Al-Ghazal, A. T., Ismail, S. I., Al-Umary, Y. I., Al-Khuzie, R. F., & Assaf, A. A. (2016). Effect of Influenza-A Virus Infection On Inflammatory gene Expression Profiles Of Leukocyte Concentrate Buffy Coats and Exacerbation of Azthma.(Inflammatory Response to Influenzaa Virus Infection). International Journal of Virology Studies & Research, 4(5), 55-63.
Ansell, J., Zappe, S., Jiang, X., Chen, L., Steiner, S., Laulicht, B., & Bakhru, S. (2019). A Novel Whole Blood Point-of-Care Coagulometer to Measure the Effect of Direct Oral Anticoagulants and Heparins. Seminars in Thrombosis and Hemostasis, 45(03), 259–263. https://doi.org/10.1055/s-0038-1676317
Athas, W. F., Hedayati, M. A., Matanoski, G. M., Farmer, E. R., & Grossman, L. (1991). Development and Field-Test Validation of an Assay for DNA Repair in Circulating Human Lymphocytes. Cancer Research, 51(21), 5786-5793.
Autissier, P., Soulas, C., Burdo, T. H., & Williams, K. C. (2010). Evaluation of a 12‐color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytometry Part A: The Journal of the International Society for Advancement of Cytometry, 77(5), 410-419. https://doi.org/10.1002/cyto.a.20859
Baboo, J., Kilbride, P., Delahaye, M., Milne, S., Fonseca, F., Blanco, M., ... & Morris, G. J. (2019). The impact of varying cooling and thawing rates on the quality of cryopreserved human peripheral blood T cells. Scientific reports, 9(1), 1-13. https://doi.org/10.1038/s41598-019-39957-x
Banas, B., Kost, B. P., Hillebrand, S., & Goebel, F. D. (2004). Platelets, a typical source of error in real-time PCR quantification of mitochondrial DNA content in human peripheral blood cells. European journal of medical research, 9, 371-377.
Banka, A. L., & Eniola-Adefeso, O. (2021). Method article: An in vitro blood flow model to advance the study of platelet adhesion utilizing a damaged endothelium. Platelets, 1–8. https://doi.org/10.1080/09537104.2021.1988550
Bardelli, M., Alleri, L., Angiolini, F., Buricchi, F., Tavarini, S., Sammicheli, C., ... & Galli, G. (2013). Ex Vivo Analysis of Human Memory B Lymphocytes Specific for A and B Influenza Hemagglutinin by Polychromatic Flow-Cytometry. PLoS ONE, 8(8), e70620. https://doi.org/10.1371/journal.pone.0070620
Benam, K. H., Villenave, R., Lucchesi, C., Varone, A., Hubeau, C., Lee, H. H., ... & Ingber, D. E. (2016). Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nature Methods, 13(2), 151–157. https://doi.org/10.1038/nmeth.3697
Betsou, F., Gaignaux, A., Ammerlaan, W., Norris, P. J., & Stone, M. (2019). Biospecimen Science of Blood for Peripheral Blood Mononuclear Cell (PBMC) Functional Applications. Current Pathobiology Reports, 7(2), 17–27. https://doi.org/10.1007/s40139-019-00192-8
Blackley, S., Kou, Z., Chen, H., Quinn, M., Rose, R. C., Schlesinger, J. J., ... & Jin, X. (2007). Primary Human Splenic Macrophages, but Not T or B Cells, Are the Principal Target Cells for Dengue Virus Infection In Vitro. Journal of Virology, 81(24), 13325–13334. https://doi.org/10.1128/JVI.01568-07
Burlingham, W. J., Jankowska-Gan, E., VanBuskirk, A. M., Pelletier, R. P., & Orosz, C. G. (2005). Delayed Type Hypersensitivity Responses. In Measuring Immunity (pp. 407–418). Elsevier. https://doi.org/10.1016/B978-012455900-4/50297-X
Capelle, C. M., Ciré, S., Ammerlaan, W., Konstantinou, M., Balling, R., Betsou, F., ... & Hefeng, F. Q. (2021). Standard Peripheral Blood Mononuclear Cell Cryopreservation Selectively Decreases Detection of Nine Clinically Relevant T Cell Markers. ImmunoHorizons, 5(8), 711–720. https://doi.org/10.4049/immunohorizons.2100049
Chen, H., Schürch, C. M., Noble, K., Kim, K., Krutzik, P. O., O’Donnell, E., ... & McIlwain, D. R. (2020). Functional comparison of PBMCs isolated by Cell Preparation Tubes (CPT) vs. Lymphoprep Tubes. BMC Immunology, 21(1), 1-15. https://doi.org/10.1186/s12865-020-00345-0
Cheng, L., Wang, L. E., Spitz, M. R., & Wei, Q. (2001). Cryopreserving whole blood for functional assays using viable lymphocytes in molecular epidemiology studies. Cancer Letters, 166(2), 155–163. https://doi.org/10.1016/S0304-3835(01)00400-1
Chen, J., Cheung, F., Shi, R., Zhou, H., & Lu, W. (2018). PBMC fixation and processing for Chromium single-cell RNA sequencing. Journal of translational medicine, 16(1), 1-11. https://doi.org/10.1186/s12967-018-1578-4
Constantinidou, A., Alifieris, C., & Trafalis, D. T. (2019). Targeting Programmed Cell Death -1 (PD-1) and Ligand (PD-L1): A new era in cancer active immunotherapy. Pharmacology & Therapeutics, 194, 84–106. https://doi.org/10.1016/j.pharmthera.2018.09.008
Costantini, A., Mancini, S., Giuliodoro, S., Butini, L., Regnery, C. M., Silvestri, G., & Montroni, M. (2003). Effects of cryopreservation on lymphocyte immunophenotype and function. Journal of Immunological Methods, 278(1–2), 145–155. https://doi.org/10.1016/S0022-1759(03)00202-3
Cui, C., Schoenfelt, K. Q., Becker, K. M., & Becker, L. (2021). Isolation of polymorphonuclear neutrophils and monocytes from a single sample of human peripheral blood. STAR Protocols, 2(4), 100845. https://doi.org/10.1016/j.xpro.2021.100845
Das, A., Ellis, G., Pallant, C., Lopes, A. R., Khanna, P., Peppa, D., ... & Maini, M. K. (2012). IL-10–Producing Regulatory B Cells in the Pathogenesis of Chronic Hepatitis B Virus Infection. The Journal of Immunology, 189(8), 3925–3935. https://doi.org/10.4049/jimmunol.1103139
Dawes, M. E., Tyler, J. W., Marsh, A. E., Larson, R. L., Steevens, B. J., & Lakritz, J. (2008). In vitro effects of lactoferrin on lipopolysaccharide-induced proliferation, gene expression, and prostanoid production by bovine peripheral blood mononuclear cells. American journal of veterinary research, 69(9), 1164-1170. https://doi.org/10.2460/ajvr.69.9.1164
De Fries, R., & Mitsuhashi, M. (1995). Quantification of mitogen induced human lymphocyte proliferation: Comparison of alamarbluetm assay to3h-thymidine incorporation assay. Journal of Clinical Laboratory Analysis, 9(2), 89–95. https://doi.org/10.1002/jcla.1860090203
Deinhardt-Emmer, S., Rennert, K., Schicke, E., Cseresnyés, Z., Windolph, M., Nietzsche, S., ... & Mosig, A. S. (2020). Co-infection with Staphylococcus aureus after primary influenza virus infection leads to damage of the endothelium in a human alveolus-on-a-chip model. Biofabrication, 12(2), 025012. https://doi.org/10.1088/1758-5090/ab7073
Deng, W., Su, Z., Liang, P., Ma, Y., Liu, Y., Zhang, K., ... & Li, R. (2021). Single-cell immune checkpoint landscape of PBMCs stimulated with Candida albicans. Emerging Microbes & Infections, 10(1), 1272–1283. https://doi.org/10.1080/22221751.2021.1942228
Durgeau, A., Virk, Y., Corgnac, S., & Mami-Chouaib, F. (2018). Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy. Frontiers in Immunology, 9, 14. https://doi.org/10.3389/fimmu.2018.00014
Espina, L. M., Valero, N. J., Hernández, J. M., & Mosquera, J. A. (2003). Increased apoptosis and expression of tumor necrosis factor-alpha caused by infection of cultured human monocytes with dengue virus. The American Journal of Tropical Medicine and Hygiene, 68(1), 48–53.
Grievink, H. W., Luisman, T., Kluft, C., Moerland, M., & Malone, K. E. (2016). Comparison of Three Isolation Techniques for Human Peripheral Blood Mononuclear Cells: Cell Recovery and Viability, Population Composition, and Cell Functionality. Biopreservation and Biobanking, 14(5), 410–415. https://doi.org/10.1089/bio.2015.0104
Huh, D. (Dan). (2015). A Human Breathing Lung-on-a-Chip. Annals of the American Thoracic Society, 12(Supplement 1), S42–S44. https://doi.org/10.1513/AnnalsATS.201410-442MG
Hwai, H., Chen, Y.-Y., & Tzeng, S.-J. (2018). B-Cell ELISpot Assay to Quantify Antigen-Specific Antibody-Secreting Cells in Human Peripheral Blood Mononuclear Cells. In A. E. Kalyuzhny (Ed.), Handbook of ELISPOT : Methods and Protocols (pp. 133–141). New York, US: Springer. https://doi.org/10.1007/978-1-4939-8567-8_11
Jamshidi, S., Bokharaei‐Salim, F., Esghaei, M., Bastani, M. N., Garshasbi, S., Chavoshpour, S., ... & Khanaliha, K. (2020). Occult HCV and occult HBV coinfection in Iranian human immunodeficiency virus‐infected individuals. Journal of Medical Virology, 92(12), 3354–3364. https://doi.org/10.1002/jmv.25808
Janský, L., Reymanová, P., & Kopecký, J. (2003). Dynamics of cytokine production in human peripheral blood mononuclear cells stimulated by LPS or infected by Borrelia. Physiological Research, 52(6), 593–598.
Jerram, A., Guy, T. V., Beutler, L., Gunasegaran, B., Sluyter, R., Fazekas de St Groth, B., & McGuire, H. M. (2021). Effects of storage time and temperature on highly multiparametric flow analysis of peripheral blood samples; implications for clinical trial samples. Bioscience Reports, 41(2), BSR20203827. https://doi.org/10.1042/BSR20203827
Kierstead, L. S., Dubey, S., Meyer, B., Tobery, T. W., Mogg, R., Fernandez, V. R., ... & Casimiro, D. R. (2007). Enhanced Rates and Magnitude of Immune Responses Detected against an HIV Vaccine: Effect of Using an Optimized Process for Isolating PBMC. AIDS Research and Human Retroviruses, 23(1), 86–92. https://doi.org/10.1089/aid.2006.0129
Kleiveland, C. R. (2015). Peripheral Blood Mononuclear Cells. In K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, & H. Wichers (Eds.), The Impact of Food Bioactives on Health (pp. 161–167). Springer International Publishing. https://doi.org/10.1007/978-3-319-16104-4_15
Kofanova, O., Bellora, C., Quesada, R. A., Bulla, A., Panadero-Fajardo, S., Keipes, M., ... & Betsou, F. (2019). IL8 and EDEM3 gene expression ratio indicates peripheral blood mononuclear cell (PBMC) quality. Journal of Immunological Methods, 465, 13–19. https://doi.org/10.1016/j.jim.2018.11.012
Kou, Z., Quinn, M., Chen, H., Rodrigo, W. W. S. I., Rose, R. C., Schlesinger, J. J., & Jin, X. (2008). Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells. Journal of Medical Virology, 80(1), 134–146. https://doi.org/10.1002/jmv.21051
Krause, P. R., Fleming, T. R., Peto, R., Longini, I. M., Figueroa, J. P., Sterne, J. A., ... & Henao-Restrepo, A. M. (2021). Considerations in boosting COVID-19 vaccine immune responses. The Lancet, 398(10308), 1377–1380. https://doi.org/10.1016/S0140-6736(21)02046-8
Kundu, R., Knight, R., Dunga, M., & Peakman, M. (2018). In silico and ex vivo approaches indicate immune pressure on capsid and non-capsid regions of coxsackie B viruses in the human system. PLOS ONE, 13(6), e0199323. https://doi.org/10.1371/journal.pone.0199323
Kutscher, S., Dembek, C. J., Deckert, S., Russo, C., Körber, N., Bogner, J. R., ... & Bauer, T. (2013). Overnight Resting of PBMC Changes Functional Signatures of Antigen Specific T- Cell Responses: Impact for Immune Monitoring within Clinical Trials. PLoS ONE, 8(10), e76215. https://doi.org/10.1371/journal.pone.0076215
Laksono, B. M., Grosserichter-Wagener, C., de Vries, R. D., Langeveld, S. A., Brem, M. D., van Dongen, J. J., ... & de Swart, R. L. (2018). In Vitro Measles Virus Infection of Human Lymphocyte Subsets Demonstrates High Susceptibility and Permissiveness of both Naive and Memory B Cells. Journal of Virology, 92(8), e00131-18. https://doi.org/10.1128/JVI.00131-18
Lin, Y. W., Wang, K. J., Lei, H. Y., Lin, Y. S., Yeh, T. M., Liu, H. S., ... & Chen, S. H. (2002). Virus Replication and Cytokine Production in Dengue Virus-Infected Human B Lymphocytes. Journal of Virology, 76(23), 12242–12249. https://doi.org/10.1128/JVI.76.23.12242-12249.2002
Loughran, S. T., Power, P. A., Maguire, P. T., McQuaid, S. L., Buchanan, P. J., Jonsdottir, I., ... & Johnson, P. A. (2018). Influenza infection directly alters innate IL-23 and IL-12p70 and subsequent IL-17A and IFN-γ responses to pneumococcus in vitro in human monocytes. PLOS ONE, 13(9), e0203521. https://doi.org/10.1371/journal.pone.0203521
Luukkainen, A., Puan, K. J., Yusof, N., Lee, B., Tan, K. S., Liu, J., ... & Wang, D. Y. (2018). A Co-culture Model of PBMC and Stem Cell Derived Human Nasal Epithelium Reveals Rapid Activation of NK and Innate T Cells Upon Influenza A Virus Infection of the Nasal Epithelium. Frontiers in Immunology, 9, 2514. https://doi.org/10.3389/fimmu.2018.02514
Majumdar, M., Ratho, R., Chawla, Y., & Singh, M. (2014). Evaluating the role of low-speed centrifugation towards transfecting human peripheral blood mononuclear cell culture. Indian Journal of Medical Microbiology, 32(2), 164–168. https://doi.org/10.4103/0255-0857.129806
Mallone, R., Mannering, S. I., Brooks-Worrell, B. M., Durinovic-Bello, I., Cilio, C. M., Wong, F. S., & Schloot, N. C. (2011). Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society. Clinical & Experimental Immunology, 163(1), 33-49. https://doi.org/10.1111/j.1365-2249.2010.04272.x
Martikainen, M.-V., & Roponen, M. (2020). Cryopreservation affected the levels of immune responses of PBMCs and antigen-presenting cells. Toxicology in Vitro, 67, 104918. https://doi.org/10.1016/j.tiv.2020.104918
McArdle, A. J., Turkova, A., & Cunnington, A. J. (2018). When do co-infections matter?: Current Opinion in Infectious Diseases, 31(3), 209–215. https://doi.org/10.1097/QCO.0000000000000447
Merck. (n.d.). Recommended Standard Method for Isolating Mononuclear Cells. Retrieved form:https://www.sigmaaldrich.com/TH/en/technical-documents/protocol/clinical-testing-and-diagnostics-manufacturing/hematology/recommended-standard-method
Merino, K. M., Allers, C., Didier, E. S., & Kuroda, M. J. (2017). Role of Monocyte/Macrophages during HIV/SIV Infection in Adult and Pediatric Acquired Immune Deficiency Syndrome. Frontiers in Immunology, 8, 1693. https://doi.org/10.3389/fimmu.2017.01693
Moore, G., Knight, G., & Blann, A. (2021). Haematology (3rd ed.). Oxford, UK: Oxford University Press.
Naseem, S., Manzoor, S., Javed, A., & Abbas, S. (2018). Interleukin-6 Rescues Lymphocyte from Apoptosis and Exhaustion Induced by Chronic Hepatitis C Virus Infection. Viral Immunology, 31(9), 624–631. https://doi.org/10.1089/vim.2018.0045
Nazarpour, R., Zabihi, E., Alijanpour, E., Abedian, Z., Mehdizadeh, H., & Rahimi, F. (2012). Optimization of human peripheral blood mononuclear cells (PBMCs) cryopreservation. International journal of molecular and cellular medicine, 1(2), 88.
O’Connell, P., Zheng, Y.-H., Amalfitano, A., & Aldhamen, Y. (2019). In vitro Infection of Primary Human Monocytes with HIV-1. Bio-protocol, 9(13), e3289-e3289. https://doi.org/10.21769/BioProtoc.3289
Olajide, O. A., Iwuanyanwu, V. U., Lepiarz‐Raba, I., Al‐Hindawi, A. A., Aderogba, M. A., Sharp, H. L., & Nash, R. J. (2021). Garcinia kola and garcinoic acid suppress SARS‐COV ‐2 spike glycoprotein S1 ‐induced hyper‐inflammation in human PBMCS through inhibition of NF‐ΚB activation. Phytotherapy Research, 35(12), 6963–6973. https://doi.org/10.1002/ptr.7315
Owen, R. E., Sinclair, E., Emu, B., Heitman, J. W., Hirschkorn, D. F., Epling, C. L., ... & Norris, P. J. (2007). Loss of T cell responses following long-term cryopreservation. Journal of Immunological Methods, 326(1–2), 93–115. https://doi.org/10.1016/j.jim.2007.07.012
Panda, S., & Ravindran, B. (2013). In vitro Culture of Human PBMCs. Bio-protocol, 3(3). https://doi.org/10.21769/BioProtoc.322
Peña-Cearra, A., Belanche, A., Gonzalez-Lopez, M., Lavín, J. L., Pascual-Itoiz, M. Á., Jiménez, E., ... & Abecia, L. (2021). Peripheral blood mononuclear cells (PBMC) microbiome is not affected by colon microbiota in healthy goats. Animal Microbiome, 3(1), 1-11. https://doi.org/10.1186/s42523-021-00091-7
Petchakup, C., Hutchinson, P. E., Tay, H. M., Leong, S. Y., Li, K. H. H., & Hou, H. W. (2021). Label-free quantitative lymphocyte activation profiling using microfluidic impedance cytometry. Sensors and Actuators B: Chemical, 339, 129864. https://doi.org/10.1016/j.snb.2021.129864
Pi, C.-H., Hornberger, K., Dosa, P., & Hubel, A. (2020). Understanding the freezing responses of T cells and other subsets of human peripheral blood mononuclear cells using DSMO-free cryoprotectants. Cytotherapy, 22(5), 291–300. https://doi.org/10.1016/j.jcyt.2020.01.013
Ramachandran, H., Laux, J., Moldovan, I., Caspell, R., Lehmann, P. V., & Subbramanian, R. A. (2012). Optimal thawing of cryopreserved peripheral blood mononuclear cells for use in high-throughput human immune monitoring studies. Cells, 1(3), 313–324. https://doi.org/10.3390/cells1030313
Sadanandam, A., Bopp, T., Dixit, S., Knapp, D. J., Emperumal, C. P., Vergidis, P., ... & Kannan, N. (2020). A blood transcriptome-based analysis of disease progression, immune regulation, and symptoms in coronavirus-infected patients. Cell Death Discovery, 6(1), 141. https://doi.org/10.1038/s41420-020-00376-x
Sałkowska, A., Karwaciak, I., Karaś, K., Dastych, J., & Ratajewski, M. (2020). SARS-CoV-2 Proteins Induce IFNG in Th1 Lymphocytes Generated from CD4+ Cells from Healthy, Unexposed Polish Donors. Vaccines, 8(4), 673. https://doi.org/10.3390/vaccines8040673
Schroers, R., Sinha, I., Segall, H., Schmidt-Wolf, I. G., Rooney, C. M., Brenner, M. K., ... & Chen, S. Y. (2000). Transduction of Human PBMC-Derived Dendritic Cells and Macrophages by an HIV-1-Based Lentiviral Vector System. Molecular Therapy, 1(2), 171–179. https://doi.org/10.1006/mthe.2000.0027
Shaath, H., & Alajez, N. M. (2021). Identification of PBMC-based molecular signature associational with COVID-19 disease severity. Heliyon, 7(5), e06866. https://doi.org/10.1016/j.heliyon.2021.e06866
Sharma, P., & Allison, J. P. (2015). The future of immune checkpoint therapy. Science, 348(6230), 56–61. https://doi.org/10.1126/science.aaa8172
Shin, S.-H., Ye, M.-K., Kim, H.-S., & Kang, H.-S. (2007). The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. International Immunopharmacology, 7(13), 1813–1818. https://doi.org/10.1016/j.intimp.2007.08.025
Somamoto, T., Nakanishi, T., & Nakao, M. (2013). Identification of anti-viral cytotoxic effector cells in the ginbuna crucian carp, Carassius auratus langsdorfii. Developmental & Comparative Immunology, 39(4), 370–377. https://doi.org/10.1016/j.dci.2012.11.001
Suni, M. A., Dunn, H. S., Orr, P. L., Laat, R. D., Sinclair, E., Ghanekar, S. A., ... & Maecker, H. T. (2003). Performance of plate-based cytokine flow cytometry with automated data analysis. BMC Immunology, 4(1), 1-12. https://doi.org/10.1186/1471-2172-4-9
Tapia-Calle, G., Born, P. A., Koutsoumpli, G., Gonzalez-Rodriguez, M. I., Hinrichs, W. L., & Huckriede, A. L. (2019). A PBMC-Based System to Assess Human T Cell Responses to Influenza Vaccine Candidates In Vitro. Vaccines, 7(4), 181. https://doi.org/10.3390/vaccines7040181
Tompa, A., Nilsson-Bowers, A., & Faresjö, M. (2018). Subsets of CD4 + , CD8 + , and CD25 hi Lymphocytes Are in General Not Influenced by Isolation and Long-Term Cryopreservation. The Journal of Immunology, 201(6), 1799–1809. https://doi.org/10.4049/jimmunol.1701409
Tremblay, S., & Khandjian, E. W. (1998). Successful use of long-term frozen lymphocytes for the establishment of lymphoblastoid cell lines. Clinical Biochemistry, 31(7), 555–556. https://doi.org/10.1016/S0009-9120(98)00066-6
Wang, Y., Gloss, B., Tang, B., Dervish, S., Santner-Nanan, B., Whitehead, C., ... & Nalos, M. (2021). Immunophenotyping of Peripheral Blood Mononuclear Cells in Septic Shock Patients With High-Dimensional Flow Cytometry Analysis Reveals Two Subgroups With Differential Responses to Immunostimulant Drugs. Frontiers in Immunology, 12, 634127. https://doi.org/10.3389/fimmu.2021.634127
Wang, Z., Yang, X., Zhong, J., Zhou, Y., Tang, Z., Zhou, H., ... & Ran, P. (2021). Exposure to SARS-CoV-2 generates T-cell memory in the absence of a detectable viral infection. Nature Communications, 12(1), 1724. https://doi.org/10.1038/s41467-021-22036-z
Wati, S., Li, P., Burrell, C. J., & Carr, J. M. (2007). Dengue Virus (DV) Replication in Monocyte-Derived Macrophages Is Not Affected by Tumor Necrosis Factor Alpha (TNF-α), and DV Infection Induces Altered Responsiveness to TNF-α Stimulation. Journal of Virology, 81(18), 10161–10171. https://doi.org/10.1128/JVI.00313-07
Weiskopf, D., Angelo, M. A., de Azeredo, E. L., Sidney, J., Greenbaum, J. A., Fernando, A. N., ... & Sette, A. (2013). Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proceedings of the National Academy of Sciences, 110(22), E2046–E2053. https://doi.org/10.1073/pnas.1305227110
Weiskopf, D., Schmitz, K. S., Raadsen, M. P., Grifoni, A., Okba, N. M., Endeman, H., ... & de Vries, R. D. (2020). Phenotype and kinetics of SARS-CoV-2–specific T cells in COVID-19 patients with acute respiratory distress syndrome. Science Immunology, 5(48), eabd2071. https://doi.org/10.1126/sciimmunol.abd2071
Zhou, R., To, K. K. W., Wong, Y. C., Liu, L., Zhou, B., Li, X., ... & Chen, Z. (2020). (2020). Acute SARS-CoV-2 Infection Impairs Dendritic Cell and T Cell Responses. Immunity, 53(4), 864-877.e5. https://doi.org/10.1016/j.immuni.2020.07.026
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.