Stem cells of Impatiens tinctoria A.Rich tuber and antioxidant activity of their extracts

Authors

  • Gizachew Haile Gidamo Biotechnology Department, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia & Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.

DOI:

https://doi.org/10.59796/jcst.V14N3.2024.59

Keywords:

Callus, cell suspension culture, stem cell extract, Impatiens tinctoria, antioxidant activity

Abstract

The use of plant stem cell extracts as active ingredients in cosmetic formulations has gained popularity recently, highlighting the need to establish Impatiens tinctoria A. Rich in vitro cultures in order to prepare bioactive stem cell extracts. This study is aimed at establishing cell suspension culture and evaluates the antioxidant activity of the stem cell extract. In order to initiate callus and cell suspension cultures, tuber explants were inoculated onto Murashige and Skoog (MS) media containing 2,4-D (0.5–2 mg/L) and BAP (0–2 mg/L). Optimal hormone concentrations of 2 mg/L 2,4-D and 1.5 mg/L BAP were sufficient to produce callus. The obtained callus was utilized as the inoculum to start a cell suspension culture for the production of stem cell extracts. High biomass accumulation was obtained at 30 g/L sucrose concentration and 6g inoculum size. The stem cell extract had a total phenolic content of 4.6 µgGAE/mL and a flavonoid content of 190.96 µgQE/mL. DPPH scavenging activity of 95.82% and the IC50 value of 37.54 µg/mL was detected for the stem cell extract. The study indicated that the suspension cultures of I. tinctoria A. Rich have the potential to produce stem cell extracts with increased flavonoids content and antioxidant activity.

References

Abebe, D., & Ayehu, A. (1993). Medicinal Plants and Enigmatic Health Practices of Northern Ethiopia. Addis Ababa: BSPE.

Adli, M. A., Idris, L., Mokhtar, S. M., Payaban M, James R. J., Halim, H., George, A. & Zohdi, R. M. (2024). Phytochemical Assessment, Antioxidant Activity, and in vitro Wound Healing Potential of Polygonum minus Huds. Journal of Current Science and Technology, 14(1), Article 18. https://doi.org/10.59796/jcst.V14N1.2024.18

Akalezi, C. O., Liu, S., Li, Q. S., Yu, J. T. & Zhong, J. J. (1999). Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng production by suspension cultures of P. ginseng. Process Biochemistry, 34(6-7), 639-642. https://doi.org/10.1016/S0032-9592(98)00132-0

Ali, M., & Abbasi, B. H. & ul-haq, I. (2013). Production of commercially important secondary metabolites and antioxidant activity in cell suspension cultures of Artemisia absinthium (L.). Industrial Crops and Products, 49, 400-406. https://doi.org/10.1016/j.indcrop.2013.05.033

Amede, T. & Taye, M. (2015). Home garden assessment report: System niches, production and marketing constraints and intensification barriers in the Ethiopian highlands, Patancheru, India: ICRISAT.

Ayele, D. T., Akele, M. L., & Melese, A. T. (2022). Analysis of total phenolic contents, flavonoids, antioxidant and antibacterial activities of Croton macrostachyus root extracts. BMC Chemistry, 16(1), Article 30. https://doi.org/10.1186/s13065-022-00822-0

Baluchamy, P. & Subramanian, A. (2023). Phytochemical screenings and evaluations of antibacterial and antioxidant activities of methanolic leaf extract of Senna auriculata (L). Roxb. Journal of Current Science and Technology, 13(2), 162-181. https://doi.org/10.59796/jcst.V13N2.2023.1734.

Bapat, V. A., Kavi Kishor, P. B., Jalaja, N., Jain, S. M. & Penna, S. (2023). Plant cell cultures: Biofactories for the production of bioactive compounds. Agronomy, 13, Article 858. https://doi.org/10.3390/agronomy13030858

Bharadvaja, N., Gautam, S. & Singh, H. (2023). Natural polyphenols: a promising bioactive compounds for skin care and cosmetics. Molecular Biology Report, 50(2), 1817–1828. https://doi.org/10.1007/s11033-022-08156-9

Bouzroud, S., Maaiden, E. E., Sobeh, M., Merghoub, N., Boukcim, H., Kouisni, L. & Kharrassi, Y. E. (2023). Biotechnological approaches to producing natural antioxidants: anti-ageing and skin longevity prospects. International Journal of Molecular Sciences, 24(2), Article 1397. https://doi.org/10.3390/ijms24021397

Buranasudja, V., Rani, D., Malla, A., Kobtrakul, K. & Vimolmangkang, S. (2021). Insights into antioxidant activities and anti-skin-aging potential of callus extract from Centella asiatica (L.). Scientific Report, 11(1), Article 13459. https://doi.org/10.1038/s41598-021-92958-7

Caucanas, M., Montastier, C., Piérard, G. E., & Quatresooz, P. (2011). Dynamics of skin barrier repair following preconditioning by a biotechnology‐driven extract from samphire (Crithmum maritimum) stem cells. Journal of Cosmetic Dermatology, 10(4), 288-293. https://doi.org/10.1111/j.1473-2165.2011.00584.x

Chen, M., Vial, M. L., Gee, L., Davis, R. A., St John, J. A., & Ekberg, J. A. K. (2020). The plant natural product 2-methoxy-1, 4-naphthoquinone stimulates therapeutic neural repair properties of olfactory ensheathing cells. Scientific Reports, 10(1), Article 951. https://doi.org/10.1038/s41598-020-57793-2

Cheng, H., Yu, L. J., Hu, Q. Y., Chen, S. C. & Sun, Y. P. (2006). Establishment of callus and cell suspension cultures of Corydalis saxicola Bunting, a rare medicinal plant. Z Naturforsch C Journal of Biosciences, 61(3-4), 251-256. http://doi:.org/10.1515/znc-2006-3-416

Cvikrová, M., Hrubcová, M., Meravý, L., & Pospíšil, F. (1988). Changes in the content of phenolic substances during the growth of Nicotiana tabacum cell suspension culture. Biologia Plantarum, 30, 185-192. https://doi.org/10.1007/BF02878754

Dantas, L. A., Faria, P. S. A., Dário, B. M. M., Arantes, A. L. M., Silva, F. G., Avila, R. G., ... & Neto, A. R. (2021). The impact of carbon source on cell growth and the production of bioactive compounds in cell suspensions of Hancornia speciosa Gomes. Scientific Reports, 11(1), Article 24315. https://doi.org/10.1038/s41598-021-03845-0

Degu, S., Abebe, A., Gemeda, N., & Bitew, A. (2021). Evaluation of antibacterial and acute oral toxicity of Impatiens tinctoria A. Rich root extracts. Plos One, 16(8), Article e0255932. https://doi.org/10.1371/journal.pone.0255932

Degu, S., Gemeda, N., Abebe, A., Berihun, A., Debebe, E., Sisay, B., ... & Bitew, A. (2020). In vitro antifungal activity, phytochemical screening and thin layer chromatography profiling of Impatiens tinctoria A. Rich root extracts. Journal of Medicinal Plants Studies, 8(5), 189-196.

Dyshlyuk, S., Vesnina, A. D., Dmitrieva, A. I., Kozlova, O. V., & Prosekov, A. Y. (2022). Optimization of parameters for obtaining callus, suspension, and root cultures of meadowsweet (Filipendula ulmaria) to isolate the largest number of biologically active substances with geroprotective properties. Brazilian Journal of Biology, 84, Article e257074. https://doi.org/10.1590/1519-6984.257074

Fassil, Y. (1981). The chemical and antimicrobial activity of Impatien tinctoria A. Rich. [Masters thesis], Addis Ababa University, Ethiopia. AU etdSpace

Foong, L. C., Chai, J. Y., Ho, A. S. H., Yeo, B. P. H., Lim, Y. M., & Tam, S. M. (2020). Comparative transcriptome analysis to identify candidate genes involved in 2-methoxy-1, 4-naphthoquinone (MNQ) biosynthesis in Impatiens balsamina L. Scientific Reports, 10(1), Article 16123. https://doi.org/10.1038/s41598-020-72997-2

Gazwi, H. S. S., Omar, M. O. A. & Mahmoud, M. E. (2023). Phytochemical analysis, antioxidant capacities, and in vitro biological activities of the extract of seed coat as by‑products of pea. BMC Chemistry, 17(1), Article 1. https://doi.org/10.1186/s13065-023-00911-8

Gidamo, G. H. (2023). Antioxidant activity and mineral content of Impatiens tinctoria A. Rich (Ensosila) tuber, an Ethiopian medicinal plant. Scientific Reports, 13(1), Article 14998. https://doi.org/10.1038/s41598-023-41824-9

Gomez, K. A. & Gomez, A. A. (1984). Statistical Procedures for Agricultural Research. New York, NY: John Wiley and Sons.

Guidoni, M., de Sousa Júnior, A. D., Aragão, V. P. M., de Melo Costa Pereira, T., Dos Santos, W. C., Monteiro, F. C., ... & Fronza, M. (2023a). Liposomal stem cell extract formulation from Coffea canephora shows outstanding anti-inflammatory activity, increased tissue repair, neocollagenesis and neoangiogenesis. Archives of Dermatological Research, 315(3), 491-503. https://doi.org/10.1007/s00403-022-02388-2

Guidoni, M., de Sousa Júnior, A. D., Aragão, V. P. M., Barth, T., Clarindo, W. R., Endringer, D. C., ... & Fronza, M. (2023b). Plant stem cell extract from Coffea canephora shows antioxidant, anti-inflammatory, and skin regenerative properties mediated by suppression of nuclear factor-κB. Brazilian Journal of Medical and Biological Research, 56, Article e12849. https://doi.org/10.1590/1414-431X2023e12849

Huang, L. D., & Van Staden, J. (2002). Salvia chamelaeagnea can be micropropagated and its callus induced to produce rosmarinic acid. South African Journal of Botany, 68(2), 177-180. https://doi.org/10.1016/S0254-6299(15)30417-8

Kalita, P., Tapan, B. K. K., Tapas, P. K. & Ramen, K. (2013). Estimation of total flavonoids content (TFC) and antioxidant activities of methanolic whole plant extract of Biophytum sensitivum linn. Journal of Drug Delivery and Therapy, 3(4), 33-37. https://doi.org/10.22270/jddt.v3i4.546

Lawag, I. L., Nolden, E. S., Schaper, A. A., Lim, L. Y., & Locher, C. (2023). A modified folin-ciocalteu assay for the determination of total phenolics content in honey. Applied Sciences, 13(4), Article 2135. https://doi.org/10.3390/app13042135

Lee, E. K., Jin, Y. W., Park, J. H., Yoo, Y. M., Hong, S. M., Amir, R., ... & Loake, G. J. (2010). Cultured cambial meristematic cells as a source of plant natural products. Nature Biotechnology, 28(11), 1213-1217. https://doi.org/10.1038/nbt.1693

Lequeux, C., Lhoste, A., Rovere, M. R., Montastier, C., & Damour, O. (2011). Model of in vitro healing to test the influence of dedifferentiated Crithmum maritimum cells on dermal repair and epidermal regeneration. Skin Pharmacology and Physiology, 24(2), 75-80. http://dio.org/10.1159/000321991

Mehmood, A., Javid, S., Khan, M. F., Ahmad, K. S., & Mustafa, A. (2022). In vitro total phenolics, total flavonoids, antioxidant and antibacterial activities of selected medicinal plants using different solvent systems. BMC Chemistry, 16(1), Article 64. https://doi.org/10.1186/s13065-022-00858-2.

Mello, M. O. de., Amaral, A. F. de C. & Melo, M. (2001). Sucrose metabolizing enzymes in cell suspension cultures of Bauhinia forficata, Curcuma zedoaria and Phaseolus vulgaris. Pesquisa Agropecuária. Brasileira, 36(9), 1085–1092. https://doi.org/ 10.1590/S0100-204X2001000900001

Menbari, A., Bahramnejad, B., Abuzaripoor, M., Shahmansouri, E., & Zarei, M. A. (2021). Establishment of callus and cell suspension cultures of Granny Smith apple fruit and antityrosinase activity of their extracts. Scientia Horticulturae, 286, Article 110222. https://doi.org/10.1016/j.scienta.2021.110222

Meravy, L. (1987). Phenolic substances in tissue cultures of Centaurium erythraea. Biologia Plantarum, 29(2), 81-87. https://doi.org/10.1007/BF02878153

Miastkowska, M., & Sikora, E. (2018). Anti-aging properties of plant stem cell extracts. Cosmetics, 5(4), Article 55. http://doi.org/10.3390/cosmetics5040055

Motolinia-Alcántara, E. A., Franco-Vásquez, A. M., Nieto-Camacho, A., Arreguín-Espinosa, R., Rodríguez-Monroy, M., Cruz-Sosa, F., & Román-Guerrero, A. (2023). Phenolic Compounds from Wild Plant and In Vitro Cultures of Ageratina pichichensis and Evaluation of Their Antioxidant Activity. Plants, 12(5), Article 1107. https://doi.org/10.3390/plants12051107

Platzer, M., Kiese, S., Herfellner, T., Schweiggert-Weisz, U., & Eisner, P. (2021). How does the phenol structure influence the results of the Folin-Ciocalteu assay?. Antioxidants, 10(5), Article 811. https://doi.org/10.3390/antiox10050811

Rahiman, F. A., & Taha, R. M. (2011). Plant regeneration and induction of coloured callus from henna (Lawsonia inermis syn. Lawsonia alba). Journal of Food Agriculture & Environment, 9(2), 397-399.

Richard, C., Lescot, M., Inzé, D., & De Veylder, L. (2002). Effect of auxin, cytokinin, and sucrose on cell cycle gene expression in Arabidopsis thaliana cell suspension cultures. Plant Cell, Tissue and Organ Culture, 69, 167-176. https://doi.org/10.1023/A: 1015241709145

Seboka, N. (2017). Bioprospecting Potential of Impatiens tinctoria for Access and Benefit Sharing 2017. Retrieved December 1, 2023 from https://www.ebi.gov.et/wp-content/uploads/2022/02/Bioprospecting-Potential-of-Impatiens-tinctoria.pdf

Wang, R. T., Yen, J. H., Liao, Y. C., Li, Y. Z., & Wang, W. P. (2023). Extract of Bletilla formosana callus elevates cellular antioxidative activity via Nrf2/HO-1 signaling pathway and inhibits melanogenesis in zebrafish. Journal of Genetic Engineering and Biotechnology, 21(1), Article 26. https://doi.org/10.1186/s43141-023-00482-0

Yu, S. X., Janssens, S. B., Zhu, X. Y., Lidén, M., Gao, T. G. & Wang, W. (2016). Phylogeny of Impatiens (Balsaminaceae): integrating molecular and morphological evidence into a new classification. Cladistics, 32(2), 179-197. https://doi.org/10.1111/cla.12119

Zhang, Y. H., Zhong, J. J. & Yu, J. T. (1996). Enhancement of ginseng saponin production in suspension cultures of Panax notoginseng: manipulation of medium sucrose. Journal of Biotechnology, 51(1), 49-56. https://doi.org/10.1016/0168-1656(96)01560-X

Downloads

Published

2024-09-01

How to Cite

Gidamo, G. H. (2024). Stem cells of Impatiens tinctoria A.Rich tuber and antioxidant activity of their extracts. Journal of Current Science and Technology, 14(3), Article 59. https://doi.org/10.59796/jcst.V14N3.2024.59

Issue

Section

Research Article

Categories