A new fuzzy parameterized intuitionistic fuzzy soft multiset theory and group decision-making
Keywords:
decision-making, fuzzy set, intuitionistic fuzzy set, multiset, soft setAbstract
Intuitionistic fuzzy soft sets (IFSSs) can effectively represent and simulate the uncertainty and diversity of judgment information offered by decision makers. In comparison to fuzzy soft sets (FSSs), IFSSs are highly beneficial for expressing vagueness and uncertainty more accurately. As a result, in this paper, we offer an approach for solving real-life group decision making problems (DMPs) with fuzzy parameterized intuitionistic fuzzy soft multisets (p-sets) by extending the fuzzy soft multiset (FSMS) based decision-making method (DMM). FSMS is a fantastic and useful tool to deal with DMPs and all the existing FSMS-based DMMs are good for solving DMPs, but in their methods, they used FSMS evaluated by only one decision maker, and the importance of membership degrees of parameters are not considered, so these methods are may not be useful in the modelling of group-DMPs, but the constructed method in this paper is very advantageous for solving real-life group-DMPs. To demonstrate the applicability of our DMM in helpful applications, certain real-life examples are used.
References
Akin, C. (2020). An application of fuzzy soft multisets to algebra. Filomat, 34(2), 399-408. DOI: https://doi.org/10.2298/FIL2002399A
Ali, M. I., Feng, F., Liu, X., Min, W. K., & Shabir, M. (2009). On some new operations in soft set theory. Computers & Mathematics with Applications, 57(9), 1547-1553. DOI: https://doi.org/10.1016/j.camwa.2008.11.009
Alkhazaleh, S., & Salleh, A. R. (2012). Fuzzy soft multi sets theory. Abstract and Applied Analysis, 2012, Article ID 350603, 1-20. DOI: 10.1155/2012/350603.
Alkhazaleh, S., Salleh, A. R., & Hassan, N. (2011). Soft multisets theory. Applied Mathematical Sciences, 5(72), 3561-3573.
Atanassov, K. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87-96. DOI: http://dx.doi.org/10.1016/S0165-0114(86)80034-3
Atanassov, K., & Gargov, G. (1989). Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31(3), 343-349. DOI: https://doi.org/10.1016/0165-0114(89)90205-4
Athira, T. M., John, S. J., & Garg. H. (2020). A novel entropy measure of Pythagorean fuzzy soft sets. AIMS Mathematics, 5(2), 1050-1061. DOI: 10.3934/math.2020073
Balami, H. M., Gwary, T. M., & Terkimbir, S. (2018). Fuzzy soft multiset approach to decision making problems. International Journal of Applied Science and Mathematics, 5(5), 60-66.
Balami, H. M., & Ibrahim, A. M. (2013). Soft multiset and its application in information system. International Journal of scientific research and management, 1(9), 471-482.
Bhardwaj, N., & Sharma, P. (2021). An advanced uncertainty measure using fuzzy soft sets: Application to decision-making problems. Big Data Mining and Analytics, 4(2), 94-103. DOI: 10.26599/BDMA.2020.9020020
Çağman, N., Çıtak, F., & Enginoğlu, S. (2010). Fuzzy parameterized fuzzy soft set theory and its applications. Turkish Journal of Fuzzy Systems, 1(1), 21-35.
Chen, H., Wang, M., & Zhao, X. (2020). A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Applied Mathematics and Computation, 369, 124872. https://doi.org/10.1016/j.amc.2019.124872
Chinram, R., Hussain, A., Ali, M. I., & Mahmood, T. (2021). Some geometric aggregation operators under q-rung orthopair fuzzy soft information with their applications in multi-criteria decision making. IEEE Access, 9, 31975-31993.
Dalkılıç, O. (2021). A novel approach to soft set theory in decision-making under uncertainty. International Journal of Computer Mathematics, 98(10), 1935-1945. https://doi.org/10.1080/00207160.2020.1868445
Dalkılıç, O., & Demirtaş, N. (2021). Bipolar fuzzy soft D-metric spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(1), 64-73.
Das, A. K. (2018). Weighted fuzzy soft multi set and decision making. International Journal of Machine Learning and Cybernetics, 9(5), 787-794.
Deng, W., Xu, J., & Zhao, H. (2019). An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem. IEEE access, 7, 20281-20292. https://doi.org/10.1109/ACCESS.2019.2897580
Deng, W., Liu, H., Xu, J., Zhao, H., & Song, Y. (2020). An improved quantum-inspired differential evolution algorithm for deep belief network. IEEE Transactions on Instrumentation and Measurement, 69(10), 7319-7327. https://doi.org/10.1109/TIM.2020.2983233
Dong, J. (2020). Decision making theories and methods based on interval-valued intuitionistic fuzzy set, Singapore: Springer.
Enginoğlu, S., & Memiş, S. (2018). A configuration of some soft decision-making algorithms via fpfs-matrices. Cumhuriyet Science Journal, 39(4), 871-881. https://doi.org/10.17776/csj.409915
Gao, R., & Wu, J. (2021). Filter with its applications in fuzzy soft topological spaces. AIMS Mathematics, 6(3), 2359-2368.
Garg, H. (2021a). CN‐q‐ROFS: Connection number‐based q‐rung orthopair fuzzy set and their application to decision‐making process. International Journal of Intelligent Systems, 36(7), 3106-3143. https://doi.org/10.1002/int.22406
Garg, H. (2021b). New exponential operation laws and operators for interval-valued q-rung orthopair fuzzy sets in group decision making process. Neural Computing and Applications, 33(20), 13937-13963. https://doi.org/10.1007/ s00521-021-06036-0
Garg, H., & Arora, R. (2018). Bonferroni mean aggregation operators under intuitionistic fuzzy soft set environment and their applications to decision-making. Journal of the Operational Research Society, 69(11), 1711-1724. DOI: 10.1080/01605682.2017.1409159
Garg, H., & Arora, R. (2020a). Maclaurin symmetric mean aggregation operators based on t-norm operations for the dual hesitant fuzzy soft set. Journal of Ambient Intelligence and Humanized Computing, 11(1), 375-410. https://doi.org/10.1007/s12652-019-01238-w
Garg, H., & Arora, R. (2020b). TOPSIS method based on correlation coefficient for solving decision-making problems with intuitionistic fuzzy soft set information. AIMS mathematics, 5(4), 2944-2966. https://doi: 10.3934/math.2020190
Garg, H., & Arora, R. (2021). Generalized Maclaurin symmetric mean aggregation operators based on Archimedean t-norm of the intuitionistic fuzzy soft set information. Artificial Intelligence Review, 54(4), 3173-3213. https://doi.org/10.1007/s10462-020-09925-3
Iqbal, M. N., & Rizwan, U. (2019). Some applications of intuitionistic fuzzy sets using new similarity measure. Journal of Ambient Intelligence and Humanized Computing, 1-5. https://doi.org/10.1007/s12652-019-01516-7
Javid, M., & Hamidzadeh, J. (2020). An active multi-class classification using privileged information and belief function. International Journal of Machine Learning and Cybernetics, 11(3), 511-524.
Jiang, Y., Tang, Y., & Chen, Q. (2011). An adjustable approach to intuitionistic fuzzy soft sets based decision making. Applied Mathematical Modelling, 35(2), 824-836.
Joshi, R. (2020). A new multi-criteria decision-making method based on intuitionistic fuzzy information and its application to fault detection in a machine. Journal of Ambient Intelligence and Humanized Computing, 11(2), 739-753. https://doi.org/10.1007/s12652-019-01322-1
Lathamaheswari, M., Nagarajan, D., Kavikumar, J., & Broumi, S. (2020). Triangular interval type-2 fuzzy soft set and its application. Complex & Intelligent Systems, 6(3), 531-544.
Liu, Y., & Jiang, W. (2020). A new distance measure of interval-valued intuitionistic fuzzy sets and its application in decision making. Soft Computing, 24(9), 6987-7003. https://doi.org/10.1007/s00500-019-04332-5
Liu, A. H., Wan, S. P., & Dong, J. Y. (2021). An axiomatic design-based mathematical programming method for heterogeneous multi-criteria group decision making with linguistic fuzzy truth degrees. Information Sciences, 571, 649-675. https://doi.org/10.1016/j.ins.2021.04.091
Maji, P. K., Biswas, R., & Roy, A. R. (2001a). Fuzzy soft sets. Journal of Fuzzy Mathematics, 9, 589-602.
Maji, P. K., Biswas, R., & Roy, A. R. (2001b). Intuitionistic fuzzy soft sets. Journal of Fuzzy Mathematics, 12, 677-692.
Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers & Mathematics with Applications, 45(4-5), 555-562.
Močkoř, J., & Hurtik, P. (2021). Fuzzy soft sets and image processing application. In International Conference on Theory and Applications of Fuzzy Systems and Soft Computing. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-64058-3_6
Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with applications, 37(4-5), 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5
Moslemnejad, S., & Hamidzadeh, J. (2021). Weighted support vector machine using fuzzy rough set theory. Soft Computing, 25(13), 8461-8481. https://doi.org/10.1007/s00500-021-05773-7
Mukherjee, A., & Das, A. K. (2015a). Application of fuzzy soft multi sets in decision making problems. Smart Innovation Systems and Technologies, Springer Verlag, 43(1) 21-28.
Mukherjee, A., & Das, A. K. (2015b). Interval valued intuitionistic fuzzy soft multi set theoretic approach to decision making problems. In 2015 International Conference on Computer, Communication and Control (IC4) (pp. 1-5). IEEE. DOI: 10.1109/IC4.2015.7375640, 1-5.
Mukherjee, A., & Das, A. K. (2015c). Relations on intuitionistic fuzzy soft multi sets. In Information Science and Applications. Berlin, Heidelberg: Springer.
Mukherjee, A., & Das, A. K. (2014). Parameterized topological space induced by an intuitionistic fuzzy soft multi topological space. Ann. Pure and Applied Math, 7, 7-12.
Mukherjee, A., & Das, A. K., Saha, A. (2014). Topological structure formed by soft multi sets and soft multi compact space. Annals of Fuzzy Mathematics and Informatics, 7(6), 919-933.
Mukherjee, A., & Das, A. K. (2013). Topological structure formed by fuzzy soft multi sets. Rev. Bull. Cal. Math. Soc, 21(2).
Mukherjee, A., & Das, A.K. (2016). Result on intuitionistic fuzzy soft multi sets and its application in information system, Journal of New Theory, (10), 66-75.
Paik, B., & Mondal, S. K. (2020). A distance-similarity method to solve fuzzy sets and fuzzy soft sets based decision-making problems. Soft Computing, 24(7), 5217-5229.
Paik, B., & Mondal, S. K. (2021). Representation and application of Fuzzy soft sets in type-2 environment. Complex & Intelligent Systems, 7(3), 1597-1617. https://doi.org/10.1007/s40747-021-00286-0
Petchimuthu, S., Garg, H., Kamacı, H., & Atagün, A. O. (2020). The mean operators and generalized products of fuzzy soft matrices and their applications in MCGDM. Computational and Applied Mathematics, 39(2), 1-32.
Rajput, A. S., Thakur, S. S., & Dubey, O. P. (2020). Soft almost β-continuity in soft topological spaces. Int J Stud Res Technol Manag, 8(2), 06-14. https://doi.org/10.18510/ijsrtm.2020.822
Riaz, M., Karaaslan, F., Nawaz, I., & Sohail, M. (2021). Soft multi-rough set topology with applications to multi-criteria decision-making problems. Soft Computing, 25(1), 799-815. DOI: https://doi.org/10.1007/s00500-020-05382-w
Roy, A. R., & Maji, P. K. (2007). A fuzzy soft set theoretic approach to decision making problems, Journal of computational and Applied Mathematics, 203(2), 412-418. DOI: https://doi.org/10.1016/j.cam.2006.04.008
Sulukan, E., Çağman, N., & Aydın, T. (2019). Fuzzy parameterized intuitionistic fuzzy soft sets and their application to a performance-based value assignment problem. Journal of New Theory, 29, 79-88.
Tokat, D., & Osmanoglu, I. (2013). Connectedness on soft multi topological spaces. Journal of New Results in Sciences, 2(2), 8-18.
Wan, S., & Dong, J. (2021). A novel extension of best-worst method with intuitionistic fuzzy reference comparisons. IEEE Transactions on Fuzzy Systems. DOI: https://doi:10.1109/TFUZZ.2021.3064695.
Wan, S., Wang, F., & Dong, J. (2019). Theory and method of intuitionistic fuzzy preference relation group decision making. Beijing, China: Science Press.
Wan, S., Xu, G., & Dong, J. (2020). An Atanassov intuitionistic fuzzy programming method for group decision making with interval-valued Atanassov intuitionistic fuzzy preference relations. Applied Soft Computing, 95,106556. DOI: https://doi.org/10.1016/j.asoc.2020.106556.
Yager, R. R. (1986). On the theory of bags. International Journal of General System, 13(1), 23-37. DOI: https://doi.org/10.1080/03081078608934952
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.