A Feasible Adaptive Fuzzy Genetic Technique for Face, Fingerprint, and Palmprint Based Multimodal Biometrics Systems

Authors

  • Kishor Kumar Singh MATS University, Raipur, 492004, Chhattisgarh, India
  • Snehlata Barde MATS University, Raipur, 492004, Chhattisgarh, India

DOI:

https://doi.org/10.59796/jcst.V14N1.2024.1

Keywords:

adaptive fuzzy genetic algorithm, face recognition, finger recognition, palm recognition, tiny memory, unimodal/multimodal biometrics

Abstract

A biometric system relies solely on one or a few biometric characteristics to verify a person's identity. Multimodal biometric authentication is a hot emerging area of research. The memory requirements, response times, and adoption/operating costs of conventional multimodal biometric identification methods are all higher than those of single-modal approaches. In this article, we conducted an examination of a framework for multimodal biometric identification systems, which demonstrates a practical implementation of soft computing strategies adaptable to face, finger, and palmprint biometrics. We applied a modified Gabor filter for feature extraction to increase processing speed and reduces the timing. Validation of the proposed system was achieved by the development of a fusion system using principal component analysis as a single matcher classifier. An adaptive fuzzy genetic algorithm was applied for weight optimization which generates verification at a high-rate performance using the fuzzy logic function. Employing fusion in identification mode, the technology was critically examined. The results indicated that the multimodal biometric system outperforms in terms of TPR, FPR, TNR, FNR, Precision, Recall, F-score, and Accuracy, resulting in reduced processing time and memory footprint, and speedier implementation.

References

Asha, N., Fiaz, A. S., Jayashree, J., Vijayashree, J., & Indumathi, J. (2022). Principal component analysis on face recognition using artificial firefirefly swarm optimization algorithm. Advances in Engineering Software, 174, Article 103296. https://doi.org/10.1016/j.advengsoft.2022.103296

Atrey, P. K., Hossain, M. A., El Saddik, A., & Kankanhalli, M. S. (2010). Multimodal fusion for multimedia analysis: a survey. Multimedia systems, 16(6), 345-379. https://doi.org/10.1007/s00530-010-0182-0

Barde, S. (2017). Multimodal biometrics: most appropriate for person identification. i-manager's Journal on Pattern Recognition, 4(3), 1-8. https://doi.org/10.26634/jpr.4.3.13881

Barde, S., & Singh, K. K. (2022, December 16–18). Developed Face and Fingerprint-Based Multimodal Biometrics System to Enhance the Accuracy by SVM [Conference presentation]. Smart and Sustainable Technologies: Rural and Tribal Development Using IoT and Cloud Computing: Proceedings of ICSST 2021 (pp. 325-336). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-2277-0_30

Barde, S., Zadgaonkar, A. S., & Sinha, G. R. (2014). Multimodal biometrics using face, ear and iris modalities. International Journal of Computer Applications, 975, Article 8887.

Chang, K. I., Bowyer, K. W., & Flynn, P. J. (2005). An evaluation of multimodal 2D+ 3D face biometrics. IEEE transactions on pattern analysis and machine intelligence, 27(4), 619-624. https://doi.org/10.1109/TPAMI.2005.70

Das, A. K., & Granados, C. (2022, September). A new fuzzy parameterized intuitionistic fuzzy soft multiset theory and group decision-making. Journal of Current Science and Technology,12(3), 547-567. https://doi.org/10.14456/jcst.2022.42

Deshpande, A. S., Patil, S. M., Lathi, R., HOD, I., & BVCOE, K. (2015). A multimodal biometric recognition system based on fusion of palmprint, fingerprint and face. International Journal of Electronics and Computer Science Engineering, 1(3), 1315-1320.

Hammouche, R., Attia, A., Akhrouf, S., & Akhtar, Z. (2022). Gabor filter bank with deep autoencoder based face recognition system. Expert Systems with Applications, 197, Article 116743. https://doi.org/10.1016/j.eswa.2022.116743

Kovač, I., & Marák, P. (2022). Finger vein recognition: utilization of adaptive gabor filters in the enhancement stage combined with sift/surf-based feature extraction. Signal, Image and Video Processing, 17, 635–641. https://doi.org/10.1007/s11760-022-02270-8

Lee, T. Z., & Bong, D. B. (2016, May 27 - 29). Face and palmprint multimodal biometric system based on bit-plane decomposition approach [Conference presentation]. 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW) (pp. 1-2). IEEE. https://doi.org/10.1109/ICCE-TW.2016.7520922

Leghari, M., Memon, S., Dhomeja, L. D., Jalbani, A. H., & Chandio, A. A. (2021). Deep feature fusion of fingerprint and online signature for multimodal biometrics. Computers, 10(2), Article 21. https://doi.org/10.3390/computers10020021

Lu, X., Kong, L., Liu, M., & Zhang, X. (2015, November 13-15). Facial expression recognition based on gabor feature and SRC [Conference presentation]. Biometric Recognition: 10th Chinese Conference, CCBR 2015, Tianjin, China. Springer International Publishing. https://doi.org/10.1007/978-3-319-25417-3_49

Malarvizhi, N., Selvarani, P., & Raj, P. (2020). Adaptive fuzzy genetic algorithm for multi biometric authentication. Multimedia Tools and Applications, 79(13-14), 9131-9144. https://doi.org/10.1007/s11042-019-7436-4

Mehdi Cherrat, E., Alaoui, R., & Bouzahir, H. (2020). Convolutional neural networks approach for multimodal biometric identification system using the fusion of fingerprint, finger-vein and face images. PeerJ Computer Science, 6, Article e248. https://doi.org/10.7717/peerj-cs.248

Melin, P., Castillo, O., Melin, P., & Castillo, O. (2005). Human Recognition using Face, Fingerprint and Voice. Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing: An Evolutionary Approach for Neural Networks and Fuzzy Systems, (Vol. 172, pp. 241-256). Heidelberg: Springer, Berlin. https://doi.org/10.1007/978-3-540-32378-5_12

Mwaura, G. W., Mwangi, W., & Otieno, C. (2017). Multimodal biometric system: fusion of face and fingerprint biometrics at match score fusion level. International Journal of Scientific & Technology Research, 6(4), 41-49.

Olazabal, O., Gofman, M., Bai, Y., Choi, Y., Sandico, N., Mitra, S., & Pham, K. (2019, January 7-9). Multimodal biometrics for enhanced iot security [Conference presentation]. 2019 IEEE 9th annual computing and communication workshop and conference (CCWC) (pp. 0886-0893). IEEE. https://doi.org/10.1109/CCWC.2019.8666599

Prabhakar, S., & Jain, A. K. (2002). Decision-level fusion in fingerprint verification. Pattern Recognition, 35(4), 861-874. https://doi.org/10.1016/S0031-3203(01)00103-0

Prasad, R., Agrawal, R., & Sharma, H. (2022, October 29-30). Modified Gabor Filter with Enhanced Naïve Bayes Algorithm for Facial Expression Recognition in Image Processing [Conference presentation]. Advances in Computational Intelligence and Communication Technology: Proceedings of CICT 2021 (pp. 371-383). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-9756-2_36

Rajasekar, V., Predić, B., Saracevic, M., Elhoseny, M., Karabasevic, D., Stanujkic, D., & Jayapaul, P. (2022). Enhanced multimodal biometric recognition approach for smart cities based on an optimized fuzzy genetic algorithm. Scientific Reports, 12(1), 1-11. https://doi.org/10.1038/s41598-021-04652-3

Roli, F., Kittler, J., Fumera, G., & Muntoni, D. (2002, June 24–26). An experimental comparison of classifier fusion rules for multimodal personal identity verification systems [Conference presentation]. Multiple Classifier Systems: Third International Workshop, MCS 2002 Cagliari, Italy, Proceedings 3 (pp. 325-335). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-45428-4_32

Singh, K. K., & Barde, S. (2022, August 26-28). Face and Palm Identification by the Sum-Rule and Fuzzy Fusion [Conference presentation]. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON) (pp. 1-5). IEEE. https://doi.org/10.1109/ASIANCON55314.2022.9909326

Sinha, A., & Barde, S. (2022, June 17-18). Illumination invariant face recognition using MSVM [Conference presentation]. AIP Conference Proceedings, Chennai, India https://doi.org/10.1063/5.0100936

Szymkowski, M., & Saeed, K. (2017, June 16-18). A multimodal face and fingerprint recognition biometrics system [Conference presentation]. Computer Information Systems and Industrial Management: 16th IFIP TC8 International Conference, CISIM 2017, Bialystok, Poland, https://doi.org/10.1007/978-3-319-59105-6_12

Vidya, B. S., & Chandra, E. (2019). Entropy based Local Binary Pattern (ELBP) feature extraction technique of multimodal biometrics as defence mechanism for cloud storage. Alexandria Engineering Journal, 58(1), 103-114. https://doi.org/10.1016/j.aej.2018.12.008

Wang, Y., Shi, D., & Zhou, W. (2022). Convolutional Neural Network Approach Based on Multimodal Biometric System with Fusion of Face and Finger Vein Features. Sensors, 22(16), Article 6039. https://doi.org/10.3390/s22166039

Zhu, L. Q., & Zhang, S. Y. (2010). Multimodal biometric identification system based on finger geometry, knuckle print and palmprint. Pattern Recognition Letters, 31(12), 1641-1649. https://doi.org/10.1016/j.patrec.2010.05.010

Downloads

Published

2023-12-06

How to Cite

Kumar Singh, K., & Barde, S. . (2023). A Feasible Adaptive Fuzzy Genetic Technique for Face, Fingerprint, and Palmprint Based Multimodal Biometrics Systems. Journal of Current Science and Technology, 14(1), Article 1. https://doi.org/10.59796/jcst.V14N1.2024.1

Issue

Section

Research Article