Investigation of Antimicrobial, Antioxidant, and Cytotoxic Activities of Boesenbergia rotunda rhizome extract
DOI:
https://doi.org/10.59796/jcst.V14N1.2024.20Keywords:
antibacterial, antioxidant, natural products, Boesenbergia rotundaAbstract
In recent years, antimicrobial resistance (AMR) has become a global threat to public health. In Hawai’i, there is an increasing rate of staph infections of methicillin-resistant Staphylococcus aureus (MRSA), and, hence, a need for new agents to combat the increase of AMR bacteria. This study evaluates the antimicrobial, antioxidant, and cytotoxic activities of Hawaiian-grown Boesenbergia rotunda. Test bacteria included clinical isolates of Gram-positive MRSA and methicillin-susceptible S. aureus (MSSA) as well as Gram-negative Serratia marcescens and Escherichia coli. Five compounds–cardamonin, pinostrobin, pinocembrin, pinostrobin chalcone, and isopanduratin A–were isolated from the ethyl acetate extract of B. rotunda rhizome, and their structures were identified by NMR spectroscopy. These samples exhibited antimicrobial activity against MRSA and MSSA strains, with minimum inhibitory concentration (MIC) values between 128 and 2 µg/mL, with isopanduratin A giving MIC values as low as 2 µg/mL. The antioxidant potential of samples was examined using ferric-reducing antioxidant power (FRAP) assay. At 1 mg/mL of tested samples, FRAP values ranged between 8.74 to 17.76 µM/µg, with pinostrobin chalcone exhibiting the highest FRAP value (17.76 ± 0.65 μM/μg). Moreover, cytotoxicity was measured via sulforhodamine B (SRB) assay. Cardamonin (IC50 of 19.43 ± 0.33 μM) and isopanduratin A (IC50 of 26.84 ± 1.06 μM) exhibited effectiveness against the lung cancer cell line A549. Compounds from B. rotunda showed potent antimicrobial effect against MRSA and MSSA strains as well as antioxidant and cytotoxic activities, and may have the potential for further evaluation and development for pharmaceutical applications.
References
Adalbert, J. R., Varshney, K., Tobin, R., & Pajaro, R. (2021). Clinical outcomes in patients co-infected with COVID-19 and Staphylococcus aureus: a scoping review. BMC infectious diseases, 21(1), 1-17. http://doi.org/10.1186/s12879-021-06616-4
Baharudin, M. K. A., Hamid, S. A., & Susanti, D. (2015). Chemical composition and antibacterial activity of essential oils from three aromatic plants of the Zingiberaceae family in Malaysia. Journal of Physical Science, 26(1), 71-81.
Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496. http://doi.org/10.1093/ajcp/45.4_ts.493
Boucher, H. W., & Corey, G. R. (2008). Epidemiology of methicillin-resistant Staphylococcus aureus. Clinical Infectious Diseases, 46(5), S344–S349. http://doi.org/10.1086/533590
Castaneda, O. A., Lee, S. C., Ho, C. T., & Huang, T. C. (2017). Macrophages in oxidative stress and models to evaluate the antioxidant function of dietary natural compounds. Journal of Food and Drug Analysis, 25(1), 111-118. http://doi.org/10.1016/j.jfda.2016.11.006
Chen, C. J., & Huang, Y. C. (2014). New epidemiology of Staphylococcus aureus infection in Asia. Clinical Microbiology and Infection, 20(7), 605-623. http://doi.org/10.1111/1469-0691.12705
Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 10(1), Article 2611. http://doi.org/10.1038/s41598-020-59451-z
Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., & Banat, I. M. (2016). Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters, 38, 1015-1019. http://doi.org/10.1007/s10529-016-2079-2
Eng-Chong, T., Yean-Kee, L., Chin-Fei, C., Choon-Han, H., Sher-Ming, W., Li-Ping, C. T., ... & Yusof, R. (2012). Boesenbergia rotunda: from ethnomedicine to drug discovery. Evidence-Based Complementary and Alternative Medicine, 2012, Article 473637. http://doi.org/10.1155/2012/473637
Enström, J., Fröding, I., Giske, C. G., Ininbergs, K., Bai, X., Sandh, G., ... & Fang, H. (2018). USA300 methicillin-resistant Staphylococcus aureus in Stockholm, Sweden, from 2008 to 2016. PLoS One, 13(11), Article e0205761. http://doi.org/10.1371/journal.pone.0205761
Fukunaga, B. T., Sumida, W. K., Taira, D. A., Davis, J. W., & Seto, T. B. (2016). Hospital-acquired methicillin-resistant Staphylococcus aureus bacteremia related to medicare antibiotic prescriptions: A state-level analysis. Hawai'i Journal of Medicine & Public Health, 75(10), 303-309.
Gerken, T. J., Roberts, M. C., Dykema, P., Melly, G., Lucas, D., De Los Santos, V., Gonzalez, J., Butaye, P., & Wiegner, T. N. (2021). Environmental Surveillance and Characterization of Antibiotic Resistant Staphylococcus aureus at Coastal Beaches and Rivers on the Island of Hawai'i. Antibiotics, 10(8), Article 980. https://doi.org/10.3390/antibiotics10080980
He, W., Li, Y., Liu, J., Hu, Z., & Chen, X. (2005). Specific interaction of chalcone‐protein: Cardamonin binding site II on the human serum albumin molecule. Biopolymers: Original Research on Biomolecules, 79(1), 48-57. http://doi.org/10.1002/bip.20328
Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology, 15, 55-63.
Hwang, J. K., Chung, J. Y., Baek, N. I., & Park, J. H. (2004). Isopanduratin A from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans. International Journal of Antimicrobial Agents, 23(4), 377-381. http://doi.org/10.1016/j.ijantimicag.2003.08.011
Islam, M. A., Atanu, M. S. H., Siraj, M. A., Acharyya, R. N., Ahmed, K. S., Dev, S., ... & Das, A. K. (2023). Supplementation of syringic acid-rich Phrynium pubinerve leaves imparts protection against allergic inflammatory responses by downregulating iNOS, COX-2, and NF-κB expressions. Heliyon, 1, 9(2), Article e13343. https://doi.org/10.1016/j.heliyon.2023.e13343
Jing, L. J., Mohamed, M., Rahmat, A., & Bakar, M. F. A. (2010). Phytochemicals, antioxidant properties and anticancer investigations of the different parts of several gingers species (Boesenbergia rotunda, Boesenbergia pulchella var attenuata and Boesenbergia armeniaca). Journal of Medicinal Plants Research, 4(1), 27-32. http://doi.org/10.5897/JMPR09.308
Ling, T., Lang, W. H., Maier, J., Quintana, C. M., & Rivas, F. (2019). Cytostatic and cytotoxic natural products against cancer cell models. Molecules, 24(10), Article 2012. https://doi.org/10.3390/molecules24102012
Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118-126. http://doi.org/10.4103/0973-7847.70902
Maciejewicz, W. (2001). Isolation of flavonoid aglycones from propolis by a column chromatography method and their identification by GC-MS and TLC methods. Journal of Liquid Chromatography & Related Technologies, 24(8), 1171-1179. http://doi.org/10.1081/JLC-100103439
Mahesh, B., & Satish, S. (2008). Antimicrobial Activity of Some Important Medicinal Plant against Plant and Human Pathogens. World Journal of Agricultural Research, 4(5), 839-843.
Malek, S. N. A., Phang, C. W., Ibrahim, H., Wahab, N. A., & Sim, K. S. (2011). Phytochemical and cytotoxic investigations of Alpinia mutica Rhizomes. Molecules, 16(1), 583-589. http://doi.org/10.3390/molecules16010583
Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of natural products, 75(3), 311-335. http://doi.org/ 10.1021/np200906s
Nguyen, S. T., Do, N. M., Tran, D. H., To, N. B., Vo, P. H., Nguyen, M. T. T., ... & Pham, P. V. (2020). Isopanduratin A Isolated from Boesenbergia pandurata Reduces HepG2 Hepatocellular Carcinoma Cell Proliferation in Both Monolayer and Three-Dimensional Cultures. Advances in Experimental Medicine and Biology, 1292, 131–143. http://doi.org/10.1007/5584_2020_523
Ongwisespaiboon, O., & Jiraungkoorskul, W. (2017). Fingerroot, Boesenbergia rotunda and its aphrodisiac activity. Pharmacognosy Reviews, 11(21), 27-30. http://doi.org/10.4103/phrev.phrev_50_16
Orellana, E. A., & Kasinski, A. L. (2016). Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio-protocol, 6(21), Article e1984. http://doi.org/10.21769/BioProtoc.1984
Pandey, K. B., & Rizvi, S. I. (2012). Ferric reducing and radical scavenging activities of selected important polyphenols present in foods. International Journal of Food Properties, 15(3), 702-708. http://doi.org/10.1080/10942912.2010.498547
Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free Radicals, Antioxidants in Disease and Health. International Journal of Biomedical Science, 4(2), 89-96.
Ramchandani, S., Naz, I., Dhudha, N., & Garg, M. (2020). An overview of the potential anticancer properties of cardamonin. Exploration of Targeted Anti-tumor Therapy, 1(6), 413-426. http://doi.org/10.37349/etat.2020.00026
Rayner, C., & Munckhof, W. J. (2005). Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus. Internal Medicine Journal, 35, S3-S16. http://doi.org/10.1111/j.1444-0903.2005.00976.x
Reller, L. B., Weinstein, M., Jorgensen, J. H., & Ferraro, M. J. (2009). Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical Infectious Diseases, 49(11), 1749-1755. http://doi.org/10.1086/647952
Romanova, D., Vachalkova, A., Cipak, L., Ovesna, Z., & Rauko, P. (2001). Study of antioxidant effect of apigenin, luteolin and quercetin by DNA protective method. Neoplasma, 48(2), 104-107.
Smolarz, H. D., Mendyk, E., Bogucka-Kocka, A., & Kockic, J. (2006). Pinostrobin–an anti-leukemic flavonoid from Polygonum lapathifolium L. ssp. nodosum (Pers.) Dans. Zeitschrift für Naturforschung C, 61(1-2), 64-68. http://doi.org/10.1515/znc-2006-1-212
Sökmen, M., & Akram Khan, M. (2016). The antioxidant activity of some curcuminoids and chalcones. Inflammopharmacology, 24(2-3), 81-86. http://doi.org/10.1007/s10787-016-0264-5
Tanjung, M., Tjahjandarie, T. S., & Sentosa, M. H. (2013). Antioxidant and cytotoxic agent from the rhizomes of Kaempferia pandurata. Asian Pacific Journal of Tropical Disease, 3(5), 401-404. http://doi.org/10.1016/S2222-1808(13)60091-2
Tang, S. W., Sukari, M. A., & Ee, G. C. L. (2007). Characterization of flavonoid derivatives from Boesenbergia rotunda (L.). Malaysian Journal of Analytical Sciences, 11(1), 154-159.
Van, T. A., Joubert, A. M., & Cromarty, A. D. (2015). Limitations of the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC research notes, 8, 1-10. http://doi.org/10.1186/s13104-015-1000-8
Yusuf, N. A., M Annuar, M. S., & Khalid, N. (2013). Existence of bioactive flavonoids in rhizomes and plant cell cultures of Boesenbergia rotunda (L.) Mansf. Kulturpfl. Australian Journal of Crop Science, 7(6), 730-734.
Zhao, C. L., Chik, W. I., & Zhang, H. J. (2022). Bioprospecting and bioassay-guided isolation of medicinal plants—A tool for drug discovery. In Evidence-Based Validation of Herbal Medicine (pp. 511-537). Amsterdam: Elsevier.
Zhou, X., Zhou, R., Li, Q., Jie, X., Hong, J., Zong, Y., ... & Wu, G. (2019). Cardamonin inhibits the proliferation and metastasis of non-small-cell lung cancer cells by suppressing the PI3K/Akt/mTOR pathway. Anti-Cancer Drugs, 30(3), 241-250. http://doi.org/10.1097/CAD.0000000000000709
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Journal of Current Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.