Antimicrobial studies of green-synthesised pure and mixed cerium–zirconium oxide nanoparticles

Authors

  • Nadar Jebamerlin Selvaraj Janaki Postgraduate and Research Department of Physics, St. John’s College (Affiliated with Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli), Palayamkottai, Tirunelveli, Tamil Nadu – 627 002, India
  • D. S. Ivan Jebakumar Postgraduate Department of Chemistry, St. John’s College, Palayamkottai, Tirunelveli, Tamil Nadu – 627002, India
  • P. Sumithraj Premkumar Postgraduate and Research Department of Physics, St. John’s College (Affiliated with Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli), Palayamkottai, Tirunelveli, Tamil Nadu – 627 002, India

Keywords:

antibacterial, antifungal, ceria, mixed metal oxide, nanoparticles, X-ray diffraction patterns, zirconia

Abstract

In the present study, we have proposed and tested a biogenic approach for synthesising ceria, zirconia and ceria–zirconia (Ce0.5Zr0.5O2) mixed metal oxide (MMO) nanoparticles using Melia dubia leaf extract with the primary goal to investigate the antimicrobial efficacy. The structural and morphological properties and the elemental composition of the prepared nanoparticles were characterised. The powder X-ray diffraction patterns showed that the green-synthesised nanoparticles are single-phase and nano-crystalline. The lattice parameters and the crystallite size were calculated from the X-ray diffraction data. Scanning electron micrographs revealed agglomeration in the case of ceria and MMO nanoparticles, while the zirconia nanoparticles remained uniform in size without agglomeration. The energy dispersive spectra of the samples confirmed the surface elemental composition of the sample with a pronounced oxygen deficiency. The nanoparticles were screened for antibacterial and antifungal potential against the bacterial strains Pseudomonas aeruginosa and Streptococcus mutans and the fungal strain Candida albicans. The zirconia nanoparticles showed good antibacterial activity against gram-positive and gram-negative bacterial strains compared to the pristine ceria and MMO nanoparticles. In particular, the zirconia nanoparticles displayed excellent antibacterial activity compared to the positive control Gentamicin. However, the ceria nanoparticles exhibited superior antifungal activity compared to the positive control employed in the experiment, Amphotericin B.

References

Ahmed, S., Saifullah, Ahmad, M., Swami, B. L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of radiation research and applied sciences, 9(1), 1-7.

Akbaripoor Tafreshi Nejad, S., Alibakhshi, E., Ramezanzadeh, B., Haddadi, S. A., Arjmand, M., & Mahdavian, M. (2022). Synthesis of double-doped graphene oxide with garlic extract and Cu cations for application in anti-bacterial coatings. Journal of Color Science and Technology, 16(2), 173-184.

Alves, T. F., Chaud, M. V., Grotto, D., Jozala, A. F., Pandit, R., Rai, M., & Dos Santos, C. A. (2018). Association of silver nanoparticles and curcumin solid dispersion: antimicrobial and antioxidant properties. Aaps Pharmscitech, 19(1), 225-231. https://doi.org/10.1208/s12249-017-0832-z

Alyamani, A. A., Albukhaty, S., Aloufi, S., AlMalki, F. A., Al-Karagoly, H., & Sulaiman, G. M. (2021). Green fabrication of zinc oxide nanoparticles using phlomis leaf extract: characterization and in vitro evaluation of cytotoxicity and antibacterial properties. Molecules, 26(20), 6140. https://doi.org/10.3390/molecules26206140

Anitha, R., Ramesh, K. V., Ravishankar, T. N., Kumar, K. S., & Ramakrishnappa, T. (2018). Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpus gomezianus fruit mediated facile green combustion method. Journal of Science: Advanced Materials and Devices, 3(4), 440-451. https://doi.org/10.1016/j.jsamd.2018.11.001

Annu, A., Sivasankari, C., & Krupasankar, U. (2020). Synthesis and characerization of Zro2 nanoparticle by leaf extract bioreduction process for its biological studies. Materials Today: Proceedings, 33, 5317-5323. https://doi.org/10.1016/j.matpr.2020.02.975

Arokiyaraj, S., Vincent, S., Saravanan, M., Lee, Y., Oh, Y. K., & Kim, K. H. (2017). Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artificial cells, nanomedicine, and biotechnology, 45(2), 372-379. https://doi.org/10.3109/21691401.2016.1160403

Arumugam, A., Karthikeyan, C., Hameed, A. S. H., Gopinath, K., Gowri, S., & Karthika, V. (2015). Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Materials Science and Engineering: C, 49, 408-415. https://doi.org/10.1016/j.msec.2015.01.042

Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., & Varma, A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 32, 55-61. https://doi.org/10.1016/j.mssp.2014.12.053

Bouafia, A., & Laouini, S. E. (2021). Plant-mediated synthesis of iron oxide nanoparticles and evaluation of the antimicrobial activity: a review. Mini-Reviews in Organic Chemistry, 18(6), 725-734. https://doi.org/10.2174/1570193X17999200908091139

Campos, P. T. A., Oliveira, C. F., Lima, J. P. V., de Queiroz Silva, D. R., Dias, S. C. L., & Dias, J. A. (2022). Cerium–zirconium mixed oxide synthesized by sol-gel method and its effect on the oxygen vacancy and specific surface area. Journal of Solid State Chemistry, 307, 122752. DOI: https://doi.org/10.1016/j.jssc.2021.122752

Chau, T. P., Kandasamy, S., Chinnathambi, A., Alahmadi, T. A., & Brindhadevi, K. (2021). Synthesis of zirconia nanoparticles using Laurus nobilis for use as an antimicrobial agent. Applied Nanoscience, 1-8. https://doi.org/10.1007/s13204-021-02041-w

Ding, X., Duan, S., Ding, X., Liu, R., & Xu, F. J. (2018). Versatile antibacterial materials: an emerging arsenal for combatting bacterial pathogens. Advanced Functional Materials, 28(40), 1802140. https://doi.org/10.1002/adfm.201802140

Durán, N., Durán, M., De Jesus, M. B., Seabra, A. B., Fávaro, W. J., & Nakazato, G. (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: nanotechnology, biology and medicine, 12(3), 789-799. https://doi.org/10.1016/j.nano.2015.11.016

Elango, M., Deepa, M., Subramanian, R., & Saraswathy, G. (2020). Investigation of structural, morphological and antimicrobial properties of polyindole/Ag doped CeO2 nanocomposites. Materials Today: Proceedings, 26, 3544-3551. https://doi.org/10.1016/j.matpr.2019.07.246

Fathima, J. B., Pugazhendhi, A., & Venis, R. (2017). Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microbial pathogenesis, 110, 245-251. https://doi.org/10.1016/j.micpath.2017.06.039

Ghenaatian, H. R., Honarmand, M., Seyedabadi, Z. Z., & Shakourian-Fard, M. (2021). Photocatalytic degradation of organic dyes using tin oxide nanoparticles synthesized in berry leaf extract in the presence of sunlight. Journal of Color Science and Technology, 15(3), 177-185.

Goyal, P., Bhardwaj, A., Mehta, B. K., & Mehta, D. (2021). Research article green synthesis of zirconium oxide nanoparticles (ZrO2NPs) using Helianthus annuus seed and their antimicrobial effects. Journal of the Indian Chemical Society, 98(8), 100089. https://doi.org/10.1016/j.jics.2021.100089

Hawar, S. N., Al-Shmgani, H. S., Al-Kubaisi, Z. A., Sulaiman, G. M., Dewir, Y. H., & Rikisahedew, J. J. (2022). Green synthesis of silver nanoparticles from Alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity. Journal of Nanomaterials, 2022. https://doi.org/10.1155/2022/1058119

Henam, S. D., Ahmad, F., Shah, M. A., Parveen, S., & Wani, A. H. (2019). Microwave synthesis of nanoparticles and their antifungal activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 213, 337-341. https://doi.org/10.1016/j.saa.2019.01.071

Huhand, Y, A. J., & Kwon, J. (2011). Nanoantibiotics’: a new paradigm for treating infectious dis‐eases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156, 128-145. https://doi.org/10.1016/j.jconrel.2011.07.002

Kamble, S., Utage, B., Mogle, P., Kamble, R., Hese, S., Dawane, B., & Gacche, R. (2016). Evaluation of curcumin capped copper nanoparticles as possible inhibitors of human breast cancer cells and angiogenesis: a comparative study with native curcumin. AAPS PharmSciTech, 17(5), 1030-1041. https://doi.org/10.1208/s12249-015-0435-5

Kasithevar, M., Periakaruppan, P., Muthupandian, S., & Mohan, M. (2017). Antibacterial efficacy of silver nanoparticles against multi-drug resistant clinical isolates from post-surgical wound infections. Microbial pathogenesis, 107, 327-334. https://doi.org/10.1016/j.micpath.2017.04.013

Khan, S. T., Musarrat, J., & Al-Khedhairy, A. A. (2016). Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids and Surfaces B: Biointerfaces, 146, 70-83. https://doi.org/10.1016/j.colsurfb.2016.05.046

Khane, Y., Benouis, K., Albukhaty, S., Sulaiman, G. M., Abomughaid, M. M., Al Ali, A., ... & Dizge, N. (2022). Green Synthesis of Silver Nanoparticles Using Aqueous Citrus limon Zest Extract: Characterization and Evaluation of Their Antioxidant and Antimicrobial Properties. Nanomaterials, 12(12), 2013. https://doi.org/10.3390/nano12122013

Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., ... & Cars, O. (2013). Antibiotic resistance—the need for global solutions. The Lancet infectious diseases, 13(12), 1057-1098. https://doi.org/10.1016/S1473-3099(13)70318-9

Leibovici, L., Paul, M., Garner, P., Sinclair, D. J., Afshari, A., Pace, N. L., ... & Tovey, D. (2016). Addressing resistance to antibiotics in systematic reviews of antibiotic interventions. Journal of Antimicrobial Chemotherapy, 71(9), 2367-2369. https://doi.org/10.1093/jac/dkw135

Mingeot-Leclercq, M. P., & Décout, J. L. (2016). Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. MedChemComm, 7(4), 586-611. https://doi.org/10.1039/c5md00503e

Nikzamir, M., Hanifehpour, Y., Akbarzadeh, A., & Panahi, Y. (2021). Applications of dendrimers in nanomedicine and drug delivery: A review. Journal of Inorganic and Organometallic Polymers and Materials, 31(6), 2246-2261. DOI: https://doi.org/10.1007/s10904-021-01925-2

Ovais, M., Nadhman, A., Khalil, A. T., Raza, A., Khuda, F., Sohail, M. F., ... & Shinwari, Z. K. (2017). Biosynthesized colloidal silver and gold nanoparticles as emerging leishmanicidal agents: an insight. Nanomedicine, 12(24), 2807-2819. https://doi.org/10.2217/nnm-2017-0233

Pachaiappan, R., Rajendran, S., Show, P. L., Manavalan, K., & Naushad, M. (2021). Metal/metal oxide nanocomposites for bactericidal effect: A review. Chemosphere, 272, 128607. https://doi.org/10.1016/j.chemosphere.2020.128607

Pandiyan, N., Murugesan, B., Sonamuthu, J., Samayanan, S., & Mahalingam, S. (2018). Facile biological synthetic strategy to morphologically aligned CeO2/ZrO2 core nanoparticles using Justicia adhatoda extract and ionic liquid: Enhancement of its bio-medical properties. Journal of Photochemistry and Photobiology B: Biology, 178, 481-488. https://doi.org/10.1016/j.jphotobiol.2017.11.036

Precious Ayanwale, A., & Reyes-López, S. Y. (2019). ZrO2–ZnO nanoparticles as antibacterial agents. ACS omega, 4(21), 19216-19224. DOI: 10.1021/acsomega.9b02527

Premkumar, P. S. (2020). Structural and Electrical Studies on Zinc Added Magnesium Oxide Nanoparticles. Journal of Physical Science, 31(3), 73-86. https://doi.org/10.21315/jps2020.31.3.6

Rajakani, V., Shajan, X. S., Arulgnanam, A., & Premkumar, P. S. (2022). Studies on the silver incorporated titania aerogel nanostructure as a photoanode in quasi solid dye-sensitized solar cells. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.04.051

Rajan, A. R., Rajan, A., Philip, D., & John, A. (2019, October). Antifungal activities of biogenic Au and CeO2 nanoparticles. In AIP Conference Proceedings (Vol. 2162, No. 1, p. 020010). AIP Publishing LLC. https://doi.org/10.1063/1.5130220

Rajeshkumar, S., & Naik, P. (2018). Synthesis and biomedical applications of cerium oxide nanoparticles–a review. Biotechnology Reports, 17, 1-5. https://doi.org/10.1016/j.btre.2017.11.008

Sathiyavimal, S., Vasantharaj, S., Veeramani, V., Saravanan, M., Rajalakshmi, G., Kaliannan, T., ... & Pugazhendhi, A. (2021). Green chemistry route of biosynthesized copper oxide nanoparticles using Psidium guajava leaf extract and their antibacterial activity and effective removal of industrial dyes. Journal of Environmental Chemical Engineering, 9(2), 105033. https://doi.org/10.1016/j.jece.2021.105033

Thema, F. T., Letsholathebe, D., & Mphale, K. (2021). Enhanced antibacterial properties of green synthesized nano ceria via Agathosma betulina natural extract. Materials Today: Proceedings, 36, 435-439. https://doi.org/10.1016/j.matpr.2020.05.010

Tran, T. V., Nguyen, D. T. C., Kumar, P. S., Din, A. T. M., Jalil, A. A., & Vo, D. V. N. (2022). Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: a review. Environmental Chemistry Letters, 1-23. https://doi.org/10.1007/s10311-021-01367-9

Zamani, K., Allah-Bakhshi, N., Akhavan, F., Yousefi, M., Golmoradi, R., Ramezani, M., ... & Ramezani, F. (2021). Antibacterial effect of cerium oxide nanoparticle against Pseudomonas aeruginosa. BMC biotechnology, 21(1), 1-11.

Downloads

Published

2022-12-26

How to Cite

Selvaraj Janaki, N. J., D. S. Ivan Jebakumar, & Premkumar, P. S. (2022). Antimicrobial studies of green-synthesised pure and mixed cerium–zirconium oxide nanoparticles. Journal of Current Science and Technology, 12(3), 439–451. retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/257

Issue

Section

Research Article