Digital transformation in the context of maintenance management systems in SMEs: critical factors and empirical effects

Authors

  • K. Velmurugan Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishanankoil-626126, Tamil Nadu, India
  • S. Saravanasankar Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishanankoil-626126, Tamil Nadu, India
  • P. Venkumar Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishanankoil-626126, Tamil Nadu, India
  • R. Sudhakara Pandian School of Mechanical Engineering, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India

Keywords:

digital transformation, maintenance management system, predictive maintenance, Q-methodology, small and medium-sized enterprises

Abstract

Nowadays, digital transformation is an inevitable measure in all industries to reap the benefits of Industry 4.0, and so all Small and Medium-sized Enterprises (SMEs) also, strive to digitize their detrimental functions to their sustained growth. As the digitization triggers real-time data capturing, the introduction of efficient Predictive Maintenance (PdM) schemes in Maintenance Management (MM) becomes feasible, improving operational efficiency. The challenging problem is to correctly identify the factors that will influence the successful implementation of digitization of Maintenance Management System in SMEs. This research focuses on enlisting, evaluating and identifying the most influential factors for implementing digitization in MM system of SMEs. In this work, a Q-methodology based solution methodology is proposed to find the critical factors for the implementation. The Q Set is developed through a well-designed interview process, and an on-line survey software is employed to rank and sort the Q statements both qualitatively and quantitatively, followed by a structured statistical analysis. Out of the five factors that evolved in the process, two factors were identified as influential for the implementation. The proposed methodology is applied to a few SMEs with similarities, and the results obtained exhibit consistency in validating the proposed methodology's accuracy. The proposed methodology is compared with that of similar Q based methodologies reported in the literature, and the proposed methodology is found to be more efficient.

References

Aggarwal, A. K., Kumar, S., Singh, V., & Garg, T. K. (2015). Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant. Journal of Industrial Engineering International, 11(1), 1-14. DOI: 10.1007/s40092-014-0091-5

Bousdekis, A., Papageorgiou, N., Magoutas, B., Apostolou, D., & Mentzas, G. (2017). A proactive event-driven decision model for joint equipment predictive maintenance and spare parts inventory optimization. Procedia Cirp, 59, 184-189. DOI: 10.1016/j.procir.2016.09.015

Barbosa, R. A., de Faria Domingues, C. H., da Silva, M. C., Foguesatto, C. R., de Aragão Pereira, M., Gimenes, R. M. T., & Borges, J. A. R. (2020). Using Q-methodology to identify rural women’s viewpoint on succession of family farms. Land Use Policy, 92, 104489. DOI: 10.1016/j.landusepol.2020.104489

Bartlett, J. E., & DeWeese, B. (2015). Using the Q methodology approach in human resource development research. Advances in Developing Human Resources, 17(1), 72-87. DOI:10.1177/1523422314559811.

Cao, Q., Zanni-Merk, C., Samet, A., de Beuvron, F. D. B., & Reich, C. (2020). Using rule quality measures for rule base refinement in knowledge-based predictive maintenance systems. Cybernetics and Systems, 51(2), 161-176. DOI: 10.1080/01969722.2019.1705550

Damio, S. M. (2016). Q Methodology: An Overview and Steps to Implementation. Asian Journal of University Education, 12(1), 105-122.

Davis, C. H., & Michelle, C. (2011). Q methodology in audience research: Bridging the qualitative/quantitative ‘divide’. Participations: Journal of Audience and Reception Studies, 8(2), 559-593.

Dziopa, F., & Ahern, K. (2011). A systematic literature review of the applications of Q-technique and its methodology. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 7(2), 39-55. DOI: 10.1027/1614-2241/a000021

Fernandes, M., Canito, A., Bolón-Canedo, V., Conceição, L., Praça, I., & Marreiros, G. (2019). Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry. International journal of information management, 46, 252-262. DOI: 10.1016/j.ijinfomgt.2018.10.006

Hribernik, K., von Stietencron, M., Bousdekis, A., Bredehorst, B., Mentzas, G., & Thoben, K. D. (2018). Towards a unified predictive maintenance system-a use case in production logistics in aeronautics. Procedia Manufacturing, 16, 131-138. DOI: 10.1016/j.promfg.2018.10.168

Hermelingmeier, V., & Nicholas, K. A. (2017). Identifying five different perspectives on the ecosystem services concept using Q methodology. Ecological Economics, 136, 255-265. DOI: 10.1016/j.ecolecon.2017.01.006

Kostenzer, J., Bos, A. M., de Bont, A., & van Exel, J. (2021). Unveiling the controversy on egg freezing in The Netherlands: A Q-methodology study on women’s viewpoints. Reproductive Biomedicine & Society Online, 12, 32-43. DOI: 10.1016/j.rbms.2020.09.009

Kanchanaharuthai, A., & Boonyaprapasorn, A. (2011). A backstepping-like nonlinear controller design for power systems with SMES, Journal of Current Science and Technology, 7(1), 1-10.

Lee, B. S. (2017). The fundamentals of Q methodology. Journal of Research Methodology, 2(2), 57-95. DOI: 10.21487/jrm.2017.11.2.2.57

Lee, J. H. (2021). Using Q methodology to analyze stakeholders’ interests in the establishment of ecotourism facilities: the case of Seocheon, Korea. Journal of Ecotourism, 20(3), 282-300. DOI: 10.1080/14724049.2021.1883626

Li, Z., Wang, Y., & Wang, K. S. (2017). Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario. Advances in Manufacturing, 5(4), 377-387. DOI: 10.1007/s40436-017-0203-8

Lundberg, A., de Leeuw, R., & Aliani, R. (2020). Using Q methodology: Sorting out subjectivity in educational research. Educational research review, 31, 100361. DOI: 10.1016/j.edurev.2020.100361

Moser, D. J., & Baulcomb, C. (2020). Social perspectives on climate change adaptation, sustainable development, and artificial snow production: A Swiss case study using Q methodology. Environmental Science & Policy, 104, 98-106. DOI: 10.1016/j.envsci.2019.10.001

Nzukam, C., Voisin, A., Levrat, E., Sauter, D., & Iung, B. (2018). Opportunistic maintenance scheduling with stochastic opportunities duration in a predictive maintenance strategy. IFAC-Papers OnLine, 51(11), 453-458. DOI:10.1016/j.ifacol.2018.08.348

Nahm, A. Y., Rao, S. S., Solis-Galvan, L. E., & Ragu-Nathan, T. S. (2002). The Q-sort method: assessing reliability and construct validity of questionnaire items at a pre-testing stage. Journal of Modern Applied Statistical Methods, 1(1), 114-125. DOI: 10.22237/jmasm/1020255360

O'Leary, K., Wobbrock, J. O., & Riskin, E. A. (2013, April). Q-Methodology as a Research and Design Tool for HCI. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp.1941-1950). DOI: 10.1145/2470654.2466256

Pandian, R. S., & Soltysova, Z. (2018). Management of mass customized orders using flexible schedules to minimize delivery times. Polish Journal of Management Studies, 18(1), 252-261. DOI: 10.17512/pjms.2018.18.1.19

Ruiz-Sarmiento, J. R., Monroy, J., Moreno, F. A., Galindo, C., Bonelo, J. M., & Gonzalez-Jimenez, J. (2020). A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Engineering Applications of Artificial Intelligence, 87, 103289. DOI: 10.1016/j.engappai.2019.103289

Rahma, A., Mardiatno, D., & Hizbaron, D. R. (2020). Q methodology to determine distinguishing and consensus factors (a case study of university students’ ecoliteracy on disaster risk reduction). In E3S Web of Conferences (Vol. 200, p. 01003). EDP Sciences. DOI: 10.1051/e3sconf/202020001003

Sneegas, G., Beckner, S., Brannstrom, C., Jepson, W., Lee, K., & Seghezzo, L. (2021). Using Q-methodology in environmental sustainability research: A bibliometric analysis and systematic review. Ecological Economics, 180, 106864. DOI: 10.1016/j.ecolecon.2020.106864

Sheykhfard, A., Haghighi, F. R., Soltaninejad, M., & Karji, A. (2020). Analyzing drivers’ mental patterns using Q-methodology. Journal of transportation technologies, 10(02), 169. DOI: 10.4236/jtts.2020.102011

Terdpaopong, K. (2011). Identifying an SME’s debt crisis potential by using logistic regression analysis. Rangsit Journal of Arts and Sciences (RJAS), 17. DOI: 10.14456/rjas.2011.22

Terdpaopong, K., & Al Farooque, O. (2011). Financial distress, restructuring and turnaround: evidence from Thai SMEs. Journal of Current Science and Technology, 2(2), 119-132. DOI: 10.14456/rjas.2012.12

Velmurugan, K., Venkumar, P., & Sudhakara, P. R. (2021a). SME 4.0: Machine learning framework for real-time machine health monitoring system. In Journal of Physics: Conference Series (Vol. 1911, No. 1, p. 012026). IOP Publishing. DOI: 10.1088/1742-6596/1911/1/012026

Velmurugan, K., Venkumar, P., & Sudhakara, P. R. (2021b). Performance Analysis of Tyre Manufacturing System in the SMEs Using RAMD Approach. Mathematical Problems in Engineering, 2021.DOI: 10.1155/2021/6616037

Downloads

Published

2022-12-26

How to Cite

K. Velmurugan, S. Saravanasankar, P. Venkumar, & R. Sudhakara Pandian. (2022). Digital transformation in the context of maintenance management systems in SMEs: critical factors and empirical effects. Journal of Current Science and Technology, 12(3), 428–438. retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/256

Issue

Section

Research Article