Evolution Pattern of Land Subsidence Using InSAR Time-Series Analysis in Bangkapi, Bangkok, Thailand

Authors

  • Angkana Pumpuang Department of Civil Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
  • Anuphao Aobpaet Department of Civil Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

DOI:

https://doi.org/10.59796/jcst.V14N3.2024.49

Keywords:

InSAR, PSInSAR, time-series, cumulative subsidence, SDE

Abstract

Subsidence in Bangkok has occurred continuously for a long time. This research applied radar satellite imagery (Sentinel-1 101 images, 2017–2022) to track land subsidence using the time series INSAR technique. The study area was in the Bang Kapi area in Bangkok, which has a high level of cumulative subsidence. The pattern of cumulative subsidence change was analyzed using the standard deviation ellipse (SDE) technique. The results showed that the Bang Kapi area had the highest cumulative subsidence in 2019 (-125.31 mm). The movement of the subsidence center changed every year in different directions with three patterns identifiable. The first pattern showed the evolution of subsidence in a northeast-southwest direction, the second pattern showed subsidence evolution in a northwest-southeast direction, and the third pattern presented evolution that did not appear to be in any specific direction. The size of the subsidence area in 2017 and 2022 increased, whereas between 2018 and 2021, the subsidence area decreased compared to other years during the research period.    

References

Aobpaet, A., Cuenca, M. C., Hooper, A., & Trisirisatayawong, I. (2013). InSAR time-series analysis of land subsidence in Bangkok, Thailand. International Journal of Remote Sensing, 34(8), 2969-2982. https://doi.org/10.1080/01431161.2012.756596

Babel, M. S., Gupta, A. D., Domingo, N. D. S., & Donna, N. (2006). Land subsidence: A consequence of groundwater over-exploitation in Bangkok, Thailand. International Review for Environmental Strategies, 6(2), 307-327.

Cigna, F., Esquivel Ramírez, R., & Tapete, D. (2021). Accuracy of Sentinel-1 PSI and SBAS InSAR Displacement Velocities against GNSS and Geodetic Leveling Monitoring Data. Remote Sensing, 13(23), 1-28. https://doi.org/10.3390/rs13234800

Department of Groundwater Resources. (2012). Report on the groundwater situation in Thailand 2012. Department of Groundwater Resources Report. Retrieved 07 06, 2023 from https://shorturl.at/Qjypy

Ding, X. L., Li, Z. W., Zhu, J. J., Feng, G. C., & Long, J. P. (2008). Atmospheric effects on InSAR measurements and their mitigation. Sensors, 8(9), 5426-5448. https://doi.org/10.3390/s8095426

Dumka, R. K., SuriBabu, D., Malik, K., Prajapati, S., & Narain, P. (2020). PS-InSAR derived deformation study in the Kachchh, Western India. Applied Computing and Geosciences, 8, Article 100041. https://doi.org/10.1016/j.acags.2020.100041

Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. https://doi.org/10.1109/36.898661

Foumelis, M., Blasco, J. M. D., Desnos, Y. L., Engdahl, M., Fernández, D., Veci, L., ... & Wong, C. (2018, July 22-27). ESA SNAP-StaMPS integrated processing for Sentinel-1 persistent scatterer interferometry [Conference presentation]. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE. Valencia, Spain. https://doi.org/10.1109/igarss.2018.8519545

Fuhrmann, T., Caro Cuenca, M., Knöpfler, A., Van Leijen, F. J., Mayer, M., Westerhaus, M., ... & Heck, B. (2015). Estimation of small surface displacements in the Upper Rhine Graben area from a combined analysis of PS-InSAR, levelling and GNSS data. Geophysical Journal International, 203(1), 614-631. https://doi.org/10.1093/gji/ggv328

Gatsios, T., Cigna, F., Tapete, D., Sakkas, V., Pavlou, K., & Parcharidis, I. (2020). Copernicus sentinel-1 MT-InSAR, GNSS and seismic monitoring of deformation patterns and trends at the Methana Volcano, Greece. Applied Sciences, 10(18), 1-23. https://doi.org/10.3390/app10186445

Guo, L., Gong, H., Ke, Y., Zhu, L., Li, X., Lyu, M., & Zhang, K. (2021). Mechanism of land subsidence mutation in Beijing plain under the background of urban expansion. Remote Sensing, 13(16), 1-22. https://doi.org/10.3390/rs13163086

Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), 1-5. https://doi.org/10.1029/2004gl021737

Hussain, M. A., Chen, Z., Wang, R., & Shoaib, M. (2021). PS-InSAR-based validated landslide susceptibility mapping along Karakorum Highway, Pakistan. Remote Sensing, 13(20), 1-25. https://doi.org/10.3390/rs13204129

Jennifer, J. J., Saravanan, S., & Pradhan, B. (2022). Persistent Scatterer Interferometry in the post-event monitoring of the Idukki Landslides. Geocarto International, 37(5), 1514-1528. https://doi.org/10.1080/10106049.2020.1778101

Khan, J., Ren, X., Hussain, M. A., & Jan, M. Q. (2022). Monitoring land subsidence using PS-InSAR technique in Rawalpindi and islamabad, Pakistan. Remote Sensing, 14(15), 1-25. https://doi.org/10.3390/rs14153722

Kun, F., Margane, A., Tatonc, T., & Wever, T. (2004) InSAR-Based Land Subsidence Map for Bangkok, Thailand. Zeitschrift Fur Angewandte Geologie, 50(1), 74-81.

Lefever, D. W. (1926). Measuring geographic concentration by means of the standard deviational ellipse. American Journal of Sociology, 32(1), 88-94. https://doi.org/10.1086/214027

Li, H., Zhu, L., Dai, Z., Gong, H., Guo, T., Guo, G., ... & Teatini, P. (2021). Spatiotemporal modeling of land subsidence using a geographically weighted deep learning method based on PS-InSAR. Science of The Total Environment, 799, Article 149244. https://doi.org/10.1016/j.scitotenv.2021.149244

Li, Y., Gong, H., Zhu, L., & Li, X. (2017). Measuring spatiotemporal features of land subsidence, groundwater drawdown, and compressible layer thickness in Beijing Plain, China. Water, 9(1), 1-17. https://doi.org/10.3390/w9010064

Lu, Z., Kwoun, O., & Rykhus, R. (2007). Interferometric synthetic aperture radar (InSAR): its past, present and future. Photogrammetric Engineering and Remote Sensing, 73(3), 217-221. https://doi.org/10.1201/9781420094428-c2

Peng, J., Chen, S., Lü, H., Liu, Y., & Wu, J. (2016). Spatiotemporal patterns of remotely sensed PM2. 5 concentration in China from 1999 to 2011. Remote Sensing of Environment, 174, 109-121. https://doi.org/10.1016/j.rse.2015.12.008

Phien-Wej, N., Giao, P. H., & Nutalaya, P. (2006). Land subsidence in bangkok, Thailand. Engineering Geology, 82(4), 187-201. https://doi.org/10.1016/j.enggeo.2005.10.004

Pritchard, M. E., & Simons, M. (2004). An InSAR‐based survey of volcanic deformation in the southern Andes. Geophysical Research Letters, 31(15), 1-4. https://doi.org/10.1029/2004gl020545

Ramirez, R. A., Lee, G. J., Choi, S. K., Kwon, T. H., Kim, Y. C., Ryu, H. H., ... & Hyun, C. (2022). Monitoring of construction-induced urban ground deformations using Sentinel-1 PS-InSAR: The case study of tunneling in Dangjin, Korea. International Journal of Applied Earth Observation and Geoinformation, 108, Article 102721. https://doi.org/10.1016/j.jag.2022.102721

Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., & Goldstein, R. M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333-382. https://doi.org/10.1109/5.838084

Rosi, A., Tofani, V., Tanteri, L., Tacconi Stefanelli, C., Agostini, A., Catani, F., & Casagli, N. (2018). The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution. Landslides, 15, 5-19. https://doi.org/10.1007/s10346-017-0861-4

Sousa, J. J., Hooper, A. J., Hanssen, R. F., Bastos, L. C., & Ruiz, A. M. (2011). Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sensing of Environment, 115(10), 2652-2663. https://doi.org/10.1016/j.rse.2011.05.021

Sousa, J. J., Ruiz, A. M., Hanssen, R. F., Perski, Z., Bastos, L., Gil, A. J., & Galindo-Zaldívar, J. (2008). PS-INSAR measurement of ground subsidence in Granada area (Betic Cordillera, Spain). Proceedings of 13th FIG Deformation Measurement and Analysis, LNEC, Lisbon, 12-15. https://doi.org/10.1016/j.protcy.2014.10.040

Sun, H., Zhang, Q., Zhao, C., Yang, C., Sun, Q., & Chen, W. (2017). Monitoring land subsidence in the southern part of the lower Liaohe plain, China with a multi-track PS-InSAR technique. Remote Sensing of Environment, 188, 73-84. https://doi.org/10.1016/j.rse.2016.10.037

Sun, Q., Zhang, L., Ding, X. L., Hu, J., Li, Z. W., & Zhu, J. J. (2015). Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sensing of Environment, 156, 45-57. https://doi.org/10.1016/j.rse.2014.09.029

Yang, K., Yan, L., Huang, G., Chen, C., & Wu, Z. (2016). Monitoring building deformation with InSAR: Experiments and validation. Sensors, 16(12), 1-16. https://doi.org/10.3390/s16122182

Zuo, J., Gong, H., Chen, B., Liu, K., Zhou, C., & Ke, Y. (2019). Time-series evolution patterns of land subsidence in the eastern Beijing Plain, China. Remote Sensing, 11(5), 1-19. https://doi.org/10.3390/s16122182

Downloads

Published

2024-09-01

How to Cite

Pumpuang, A., & Aobpaet, A. (2024). Evolution Pattern of Land Subsidence Using InSAR Time-Series Analysis in Bangkapi, Bangkok, Thailand. Journal of Current Science and Technology, 14(3), Article 49. https://doi.org/10.59796/jcst.V14N3.2024.49