Evolution Pattern of Land Subsidence Using InSAR Time-Series Analysis in Bangkapi, Bangkok, Thailand
DOI:
https://doi.org/10.59796/jcst.V14N3.2024.49Keywords:
InSAR, PSInSAR, time-series, cumulative subsidence, SDEAbstract
Subsidence in Bangkok has occurred continuously for a long time. This research applied radar satellite imagery (Sentinel-1 101 images, 2017–2022) to track land subsidence using the time series INSAR technique. The study area was in the Bang Kapi area in Bangkok, which has a high level of cumulative subsidence. The pattern of cumulative subsidence change was analyzed using the standard deviation ellipse (SDE) technique. The results showed that the Bang Kapi area had the highest cumulative subsidence in 2019 (-125.31 mm). The movement of the subsidence center changed every year in different directions with three patterns identifiable. The first pattern showed the evolution of subsidence in a northeast-southwest direction, the second pattern showed subsidence evolution in a northwest-southeast direction, and the third pattern presented evolution that did not appear to be in any specific direction. The size of the subsidence area in 2017 and 2022 increased, whereas between 2018 and 2021, the subsidence area decreased compared to other years during the research period.
References
Aobpaet, A., Cuenca, M. C., Hooper, A., & Trisirisatayawong, I. (2013). InSAR time-series analysis of land subsidence in Bangkok, Thailand. International Journal of Remote Sensing, 34(8), 2969-2982. https://doi.org/10.1080/01431161.2012.756596
Babel, M. S., Gupta, A. D., Domingo, N. D. S., & Donna, N. (2006). Land subsidence: A consequence of groundwater over-exploitation in Bangkok, Thailand. International Review for Environmental Strategies, 6(2), 307-327.
Cigna, F., Esquivel Ramírez, R., & Tapete, D. (2021). Accuracy of Sentinel-1 PSI and SBAS InSAR Displacement Velocities against GNSS and Geodetic Leveling Monitoring Data. Remote Sensing, 13(23), 1-28. https://doi.org/10.3390/rs13234800
Department of Groundwater Resources. (2012). Report on the groundwater situation in Thailand 2012. Department of Groundwater Resources Report. Retrieved 07 06, 2023 from https://shorturl.at/Qjypy
Ding, X. L., Li, Z. W., Zhu, J. J., Feng, G. C., & Long, J. P. (2008). Atmospheric effects on InSAR measurements and their mitigation. Sensors, 8(9), 5426-5448. https://doi.org/10.3390/s8095426
Dumka, R. K., SuriBabu, D., Malik, K., Prajapati, S., & Narain, P. (2020). PS-InSAR derived deformation study in the Kachchh, Western India. Applied Computing and Geosciences, 8, Article 100041. https://doi.org/10.1016/j.acags.2020.100041
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. https://doi.org/10.1109/36.898661
Foumelis, M., Blasco, J. M. D., Desnos, Y. L., Engdahl, M., Fernández, D., Veci, L., ... & Wong, C. (2018, July 22-27). ESA SNAP-StaMPS integrated processing for Sentinel-1 persistent scatterer interferometry [Conference presentation]. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE. Valencia, Spain. https://doi.org/10.1109/igarss.2018.8519545
Fuhrmann, T., Caro Cuenca, M., Knöpfler, A., Van Leijen, F. J., Mayer, M., Westerhaus, M., ... & Heck, B. (2015). Estimation of small surface displacements in the Upper Rhine Graben area from a combined analysis of PS-InSAR, levelling and GNSS data. Geophysical Journal International, 203(1), 614-631. https://doi.org/10.1093/gji/ggv328
Gatsios, T., Cigna, F., Tapete, D., Sakkas, V., Pavlou, K., & Parcharidis, I. (2020). Copernicus sentinel-1 MT-InSAR, GNSS and seismic monitoring of deformation patterns and trends at the Methana Volcano, Greece. Applied Sciences, 10(18), 1-23. https://doi.org/10.3390/app10186445
Guo, L., Gong, H., Ke, Y., Zhu, L., Li, X., Lyu, M., & Zhang, K. (2021). Mechanism of land subsidence mutation in Beijing plain under the background of urban expansion. Remote Sensing, 13(16), 1-22. https://doi.org/10.3390/rs13163086
Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23), 1-5. https://doi.org/10.1029/2004gl021737
Hussain, M. A., Chen, Z., Wang, R., & Shoaib, M. (2021). PS-InSAR-based validated landslide susceptibility mapping along Karakorum Highway, Pakistan. Remote Sensing, 13(20), 1-25. https://doi.org/10.3390/rs13204129
Jennifer, J. J., Saravanan, S., & Pradhan, B. (2022). Persistent Scatterer Interferometry in the post-event monitoring of the Idukki Landslides. Geocarto International, 37(5), 1514-1528. https://doi.org/10.1080/10106049.2020.1778101
Khan, J., Ren, X., Hussain, M. A., & Jan, M. Q. (2022). Monitoring land subsidence using PS-InSAR technique in Rawalpindi and islamabad, Pakistan. Remote Sensing, 14(15), 1-25. https://doi.org/10.3390/rs14153722
Kun, F., Margane, A., Tatonc, T., & Wever, T. (2004) InSAR-Based Land Subsidence Map for Bangkok, Thailand. Zeitschrift Fur Angewandte Geologie, 50(1), 74-81.
Lefever, D. W. (1926). Measuring geographic concentration by means of the standard deviational ellipse. American Journal of Sociology, 32(1), 88-94. https://doi.org/10.1086/214027
Li, H., Zhu, L., Dai, Z., Gong, H., Guo, T., Guo, G., ... & Teatini, P. (2021). Spatiotemporal modeling of land subsidence using a geographically weighted deep learning method based on PS-InSAR. Science of The Total Environment, 799, Article 149244. https://doi.org/10.1016/j.scitotenv.2021.149244
Li, Y., Gong, H., Zhu, L., & Li, X. (2017). Measuring spatiotemporal features of land subsidence, groundwater drawdown, and compressible layer thickness in Beijing Plain, China. Water, 9(1), 1-17. https://doi.org/10.3390/w9010064
Lu, Z., Kwoun, O., & Rykhus, R. (2007). Interferometric synthetic aperture radar (InSAR): its past, present and future. Photogrammetric Engineering and Remote Sensing, 73(3), 217-221. https://doi.org/10.1201/9781420094428-c2
Peng, J., Chen, S., Lü, H., Liu, Y., & Wu, J. (2016). Spatiotemporal patterns of remotely sensed PM2. 5 concentration in China from 1999 to 2011. Remote Sensing of Environment, 174, 109-121. https://doi.org/10.1016/j.rse.2015.12.008
Phien-Wej, N., Giao, P. H., & Nutalaya, P. (2006). Land subsidence in bangkok, Thailand. Engineering Geology, 82(4), 187-201. https://doi.org/10.1016/j.enggeo.2005.10.004
Pritchard, M. E., & Simons, M. (2004). An InSAR‐based survey of volcanic deformation in the southern Andes. Geophysical Research Letters, 31(15), 1-4. https://doi.org/10.1029/2004gl020545
Ramirez, R. A., Lee, G. J., Choi, S. K., Kwon, T. H., Kim, Y. C., Ryu, H. H., ... & Hyun, C. (2022). Monitoring of construction-induced urban ground deformations using Sentinel-1 PS-InSAR: The case study of tunneling in Dangjin, Korea. International Journal of Applied Earth Observation and Geoinformation, 108, Article 102721. https://doi.org/10.1016/j.jag.2022.102721
Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., & Goldstein, R. M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333-382. https://doi.org/10.1109/5.838084
Rosi, A., Tofani, V., Tanteri, L., Tacconi Stefanelli, C., Agostini, A., Catani, F., & Casagli, N. (2018). The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution. Landslides, 15, 5-19. https://doi.org/10.1007/s10346-017-0861-4
Sousa, J. J., Hooper, A. J., Hanssen, R. F., Bastos, L. C., & Ruiz, A. M. (2011). Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sensing of Environment, 115(10), 2652-2663. https://doi.org/10.1016/j.rse.2011.05.021
Sousa, J. J., Ruiz, A. M., Hanssen, R. F., Perski, Z., Bastos, L., Gil, A. J., & Galindo-Zaldívar, J. (2008). PS-INSAR measurement of ground subsidence in Granada area (Betic Cordillera, Spain). Proceedings of 13th FIG Deformation Measurement and Analysis, LNEC, Lisbon, 12-15. https://doi.org/10.1016/j.protcy.2014.10.040
Sun, H., Zhang, Q., Zhao, C., Yang, C., Sun, Q., & Chen, W. (2017). Monitoring land subsidence in the southern part of the lower Liaohe plain, China with a multi-track PS-InSAR technique. Remote Sensing of Environment, 188, 73-84. https://doi.org/10.1016/j.rse.2016.10.037
Sun, Q., Zhang, L., Ding, X. L., Hu, J., Li, Z. W., & Zhu, J. J. (2015). Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sensing of Environment, 156, 45-57. https://doi.org/10.1016/j.rse.2014.09.029
Yang, K., Yan, L., Huang, G., Chen, C., & Wu, Z. (2016). Monitoring building deformation with InSAR: Experiments and validation. Sensors, 16(12), 1-16. https://doi.org/10.3390/s16122182
Zuo, J., Gong, H., Chen, B., Liu, K., Zhou, C., & Ke, Y. (2019). Time-series evolution patterns of land subsidence in the eastern Beijing Plain, China. Remote Sensing, 11(5), 1-19. https://doi.org/10.3390/s16122182
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Journal of Current Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.