Comprehensive Insight into the Failure Mechanisms, Modes, and Material Selection of Steam Turbine Blades

Authors

  • Nur Syahirah Zainuddin Department of Mechanical & Manufacturing Engineering, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
  • Wan Fathul Hakim W. Zamri Department of Mechanical & Manufacturing Engineering, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
  • Mohd Zaidi Omar Department of Mechanical & Manufacturing Engineering, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
  • Muhamad Faiz bin Md Din Fakulti Kejuruteraan, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia

DOI:

https://doi.org/10.59796/jcst.V14N3.2024.47

Keywords:

blade material, creep, erosion, failure mechanisms, fatigue, material selection, steam turbine blade

Abstract

Addressing the critical issue of turbine blade failures, particularly in steam turbine systems, this comprehensive review delves into examining and analyzing various failure mechanisms associated with steam turbine blades. The discussion extends to the mode utilized in investigating these failures, with a specific focus on the crucial role of steam turbines in power generation. The review synthesizes various studies that have explored suitable blade materials for optimized performance and reduced failure risks. Findings reveal common failures such as thermal stress, mechanical stress, corrosion, erosion, fatigue, and creep in turbine blades and hubs. Consequently, the review serves as a valuable resource, providing insights into failure mechanisms and advocating for the implementation of suitable materials to enhance the reliability and performance of steam turbine blades.

References

Abdollahzadeh Jamalabadi, M. Y. (2016). Thermal radiation effects on creep behavior of the turbine blade. Multidiscipline Modeling in Materials and Structures, 12(2), 291–314. https://doi.org/10.1108/MMMS-09-2015-0053

Adnyana, D. N. (2018). Corrosion Fatigue of a Low-Pressure Steam Turbine Blade. Journal of Failure Analysis and Prevention, 18(1), 162–173. https://doi.org/10.1007/s11668-018-0397-5

Azeez, A. (2021). High-Temperature Fatigue in a Steam Turbine Steel: Modelling of Cyclic Deformation and Crack Closure. Licentiate dissertation, Linköping University Electronic Press. https://doi.org/10.3384/lic.diva-173354

Azimian, M., & Bart, H. J. (2016). Computational analysis of erosion in a radial inflow steam turbine. Engineering Failure Analysis, 64, 26–43. https://doi.org/10.1016/j.engfailanal.2016.03.004

Banaszkiewicz, M. (2018). Numerical investigations of crack initiation in impulse steam turbine rotors subject to thermo-mechanical fatigue. Applied Thermal Engineering, 138, 761–773. https://doi.org/10.1016/j.applthermaleng.2018.04.099

Benammar, S., & Tee, K. F. (2023). Failure diagnosis of rotating Machines for steam turbine in Cap-Djinet thermal power plant. Engineering Failure Analysis, 149, 1-18. https://doi.org/10.1016/j.engfailanal.2023.107284

Bhagi, L. K., Rastogi, V., Gupta, P., & Pradhan, S. (2018). Dynamic stress analysis of L-1 low pressure steam turbine blade: mathematical modelling and finite element method. Materials Today: Proceedings, 5(14), 28117-28126. https://doi.org/10.1016/j.matpr.2018.10.05

Bogdan, M., Błachnio, J., Kułaszka, A., & Zasada, D. (2021). Investigation of the relationship between degradation of the coating of gas turbine blades and its surface color. Materials, 14(24), Article 7843. https://doi.org/10.3390/ma14247843

Cano, S., Rodríguez, J. A., Rodríguez, J. M., García, J. C., Sierra, F. Z., Casolco, S. R., & Herrera, M. (2019). Detection of damage in steam turbine blades caused by low cycle and strain cycling fatigue. Engineering Failure Analysis, 97, 579–588. https://doi.org/10.1016/j.engfailanal.2019.01.015

Choi, W., Yoon, H., & Youn, B. D. (2020). Operation-Adaptive Damage Assessment of Steam Turbines Using a Nonlinear Creep-Fatigue Interaction Model. IEEE Access, 8, 126776–126783. https://doi.org/10.1109/ACCESS.2020.3008209

Chowdhury, T. S., Mohsin, F. T., Tonni, M. M., Mita, M. N. H., & Ehsan, M. M. (2023). A critical review on gas turbine cooling performance and failure analysis of turbine blades. International Journal of Thermofluids, 18, Article 100329. https://doi.org/10.1016/j.ijft.2023.100329

Damanik, N., & Dahlan, H. (2021). Failure Investigation and Crack Propagation Analysis of LP Blade Steam Turbine 220 MW. Key Engineering Materials, 876, 67-76. https://doi.org/10.4028/www.scientific.net/KEM.876.67

Fameso, F., Desai, D., Kok, S., Armfield, D., & Newby, M. (2022). Residual Stress Enhancement by Laser Shock Treatment in Chromium-Alloyed Steam Turbine Blades. Materials, 15(16), Article 5682. https://doi.org/10.3390/ma15165682

Gong, J. G., Guo, S. S., Gao, F. H., Niu, T. Y., & Xuan, F. Z. (2021). Creep damage and interaction behavior of neighboring notches in components at elevated temperature. Engineering Fracture Mechanics, 256, Article 107996. https://doi.org/10.1016/j.engfracmech.2021.107996

He, Q., Xue, S., He, H., Hu, F., Gao, H. C., & Hu, W. (2023). Fatigue fracture failure analysis of 12Cr12Mo steam turbine blade. Engineering Failure Analysis, 150, 1-8. https://doi.org/10.1016/j.engfailanal.2023.107356

Hosseini, S. A., Lakzian, E., & Nakisa, M. (2023). Multi-objective optimization of supercooled vapor suction for decreasing the nano-water droplets in the steam turbine blade. International Communications in Heat and Mass Transfer, 142, Article 106613. https://doi.org/10.1016/j.icheatmasstransfer.2023.106613

Hosseinizadeh, S. E., Ghamati, E., Jahangiri, A., Majidi, S., Khazaee, I., & Faghih Aliabadi, M. A. (2023). Reduction of water droplets effects in steam turbine blade using multi-objective optimization of hot steam injection. International Journal of Thermal Sciences, 187, 1-20. https://doi.org/10.1016/j.ijthermalsci.2023.108155

Ilieva, G. I. (2016). Erosion failure mechanisms in turbine stage with twisted rotor blade. Engineering Failure Analysis, 70, 90–104. https://doi.org/10.1016/j.engfailanal.2016.07.008

Kumaraswamy, K., & Raju, A. S. N. (2019) Design and Vibrational Analysis of Steam Turbine High Pressure Moving Blade. International Journal of Research in Engineering, Science, and Management, 2(5), 731-737.

Katinić, M., & Kozak, D. (2018). Steam turbine moving blade failure caused by corrosion fatigue - Case history. Procedia Structural Integrity, 13, 2040–2047. https://doi.org/10.1016/j.prostr.2018.12.211

Krechkovska, H., Hredil, M., Student, O., Svirska, L., Krechkovska, S., Tsybailo, I., & Solovei, P. (2023). Peculiarities of fatigue fracture of high-alloyed heat-resistant steel after its operation in steam turbine rotor blades. International Journal of Fatigue, 167, Article 107341. https://doi.org/10.1016/j.ijfatigue.2022.107341

Kshirsagar, R., & Prakash, R. (2019). Prediction of corrosion-based damages in turbine blades using modal and harmonic analyses. Materials Today: Proceedings, 46, 10093–10101. https://doi.org/10.1016/j.matpr.2021.07.417

Kumar, M. Y., & Reddy, M. V. R. (2022). Structural & Thermal Analysis of Different Materials of Steam Turbine Blade Shaft using Finite Element Methods. AIP Conference Proceedings, 2648, 1350-6307. https://doi.org/10.1063/5.0114558

Kumar, M. Y., Saheb, S. H., & Reddy, M. V. R. (2020). Transient Thermal Analysis of the Turbine Blade. Global Journal of Researches in Engineering, 20(3), 41-46.

Leyzerovich, A. S. (2021). Steam turbines for modern fossil-fuel power plants. New York: River Publishers. https://doi.org/10.1201/9781003151388.

Mabruri, E., Sigit, H. M., Anwar, M. S., Prasetyo, M. A., Nikitasari, A., & Fretes, A. De. (2020). Pitting Corrosion Resistance of CA6NM and 410 Martensitic Stainless Steels in Various Environments. IOP Conference Series: Materials Science and Engineering, 858, Article 012049. https://doi.org/10.1088/1757-899X/858/1/012049

Marketresearch.com. (2023). Market research. Retrieved June 9, 2023, from https://www.marketresearch.com/Grand-View-Research-v4060/Steam-Turbine-Size-Share-Trends-34336939/

Mudang, M., Hamzah, E., Bakhsheshi-Rad, H. R., & Berto, F. (2021). Effect of heat treatment on microstructure and creep behavior of Fe-40Ni-24Cr alloy. Applied Sciences, 11(17), Article 7951. https://doi.org/10.3390/app11177951

Mukherjee, A., Bhargava, N., Mathur, P., Varun, K., & Prabu, S. S. (2022). Investigation on Performance Evaluation and Thermal and Structural Analysis of Steam Turbine Blades. ECS Transactions, 107(1), 18435–18445. https://doi.org/ 10.1149/10701.18435ecst

Plesiutschnig, E., Fritzl, P., Enzinger, N., & Sommitsch, C. (2016). Fracture analysis of a low pressure steam turbine blade. Case Studies in Engineering Failure Analysis, 5, 39-50. https://doi.org/10.1016/j.csefa.2016.02.001

Prabhunandan, G. S., & Byregowda, H. V. (2018). Dynamic Analysis of a Steam Turbine with Numerical Approach. Materials Today: Proceedings, 5(2), 5414–5420. https://doi.org/10.1016/j.matpr.2017.12.128

Puspasari, V., Prasetyo, M. A., Nikitasari, A., Mabruri, E., & Anwar, M. S. (November 19–20, 2021). Effect of tempering treatment on pitting corrosion resistance of modified cast CA6NM stainless steel in 3.5 % NaCl solution [Conference presentation]. The 4th International Seminar on Metallurgy And Materials (ISMM2020): Accelerating Research and Innovation on Metallurgy and Materials for Inclusive and Sustainable Industry, Tangerang Selatan, Indonesia. https://doi.org/10.1063/5.0060174

Quintanar-Gago, D. A., Nelson, P. F., Díaz-Sánchez, Á., & Boldrick, M. S. (2021). Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network. Reliability Engineering and System Safety, 207, Article 107329. https://doi.org/10.1016/j.ress.2020.107329

Rani, S., Agrawal, A. K., & Rastogi, V. (2019). Vibration analysis for detecting failure mode and crack location in first stage gas turbine blade. Journal of Mechanical Science and Technology, 33, 1–10. https://doi.org/10.1007/s12206-018-1201-x

Richardson, A. (2014). The evolution of the Parsons steam turbine. Cambridge, UK: Cambridge University Press.

Rodrígez Ramírez, J. A., Clemente Mirafuentes, C. M., Zalapa Garibay, M. A., García Castrejón, J. C., & Guillén Anaya, L. G. (2023). Corrosion Fatigue Analysis in Power Steam Turbine Blade. Metals, 13(3), Article 544. https://doi.org/10.3390/met13030544

Sangode, S. (2021). Design and Analysis of Steam Turbine Rotor Blade. International Journal for Research in Applied Science and Engineering Technology, 9(8), 2511–2518. https://doi.org/10.22214/ijraset.2021.37806

Sherfedinov, R., Ishchenko, M., Slaston, L., & Alyokhina, S. (2023). Working blades development for the last stages of steam turbine low pressure cylinder. Academic Journal of Manufacturing Engineering, 21(1), 126-131.

Shukla, A., & Harsha, S. P. (2016). Vibration Response Analysis of Last Stage LP Turbine Blades for Variable Size of Crack in Root. Procedia Technology, 23, 232–239. https://doi.org/10.1016/j.protcy.2016.03.022

Singh, S., Kharub, M., Singh, J., Singh, J., & Jangid, V. (2021). Brief survey on mechanical failure and preventive mechanism of turbine blades. Materials Today: Proceedings, 38, 2515-2524. https://doi.org/10.1016/j.matpr.2020.07.546.

Slaston, L. O., Ishchenko, M. G., Sherfedinov, R. B., & Alyokhina, S. V. (2020). Basic approaches to the choice of material for working blades of the last stages of the LPC of powerful steam turbines. Problems of Atomic Science and Technology, 125(1), 215–219. https://doi.org/10.46813/2020-125-215

Tanuma, T. (2022), Advances in Steam Turbines for Modern Power Plants(2ed). Woodhead Publishing Series in Energy (pp. 639–642). https://doi.org/10.1016/B978-0-12-824359-6.00026-3

Teuber, H., Barnikel, J., Dankert, M., David, W., Ghicov, A., & Voss, S. (2019). Development of a new high-strength steel for low pressure steam turbine end-stage blades. Journal of Engineering for Gas Turbines and Power, 141(1), 1-20. https://doi.org/10.1115/1.4040849

Thijel, J. F., Al-hafidh, M., & Abdul-Husain, H. A. (2021). Case study: Investigation of the fracture of low pressure steam turbine blade. International Journal of Engineering Science Invention (IJESI), 10(04), 28-33. https://doi.org/10.35629/6734-1004032833

Tian, L., Hai, Y., Qingyue, Z., & Qin, Y. (2019). Non-destructive testing Techniques based on Failure Analysis of Steam Turbine Blade. IOP Conference Series: Materials Science and Engineering, 576(1), 1-7. https://doi.org/10.1088/1757-899X/576/1/012038

USAGov. (2023). U.S. Department of Energy. Retrieved June 9, 2023, from https://www.usa.gov/agencies/u-s-department-of-energy

Wang, W. Z., Buhl, P., Klenk, A., & Liu, Y. Z. (2016). The effect of in-service steam temperature transients on the damage behavior of a steam turbine rotor. International Journal of Fatigue, 87, 471–483. https://doi.org/10.1016/j.ijfatigue.2016.02.040

Xie, L., Tian, F., Liu, J., & Chen, H. (2020). Analysis on the Causes of Cracking at the Last Stage Blade of the Low-pressure Rotor in thermal power plant. E3S Web of Conferences, 165, 1-4. https://doi.org/10.1051/e3sconf/202016506010

Yadav, K. K., Singh, D., Priyadarshi, P., Kumar, M., Kumar, V., Sharma, P. K., & Sharma, I. D. (2018). Studies and Analysis of Effect of Foreign Particles on the Parts of Steam Turbine. International Journal of Applied Engineering Research,13(6), 386-395. Retrieved from http://www.ripublication.com

Zhang, C. Y., Yuan, Z. S., Wang, Z., Fei, C. W., & Lu, C. (2019). Probabilistic fatigue/creep optimization of turbine bladed disk with fuzzy multi-extremum response surface method. Materials, 12(20), 1-14. https://doi.org/10.3390/ma12203367

Zhang, G., Wang, X., Wiśniewski, P., Chen, J., Qin, X., & Dykas, S. (2023). Effect of NaCl presence caused by salting out on the heterogeneous-homogeneous coupling non-equilibrium condensation flow in a steam turbine cascade. Energy, 263, 1-13. https://doi.org/10.1016/j.energy.2022.126074

Zhang, Z., Yang, B., Zhang, D., & Xie, Y. (2021). Experimental investigation on the water droplet erosion characteristics of blade materials for steam turbine. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(20), 5103–5115. https://doi.org/10.1177/0954406220979730

Zhao, W., Li, Y., Xue, M., Wang, P., & Jiang, J. (2018). Vibration analysis for failure detection in low pressure steam turbine blades in nuclear power plant. Engineering Failure Analysis, 84, 11–24. https://doi.org/10.1016/j.engfailanal.2017.10.009

Zhu, X., Chen, H., Xuan, F., & Chen, X. (2019). On the creep fatigue and creep rupture behaviours of 9–12% Cr steam turbine rotor. European Journal of Mechanics, A/Solids, 76, 263–278. https://doi.org/10.1016/j.euromechsol.2019.04.017

Downloads

Published

2024-09-01

How to Cite

Syahirah Zainuddin, N., Fathul Hakim W. Zamri, W., Omar, M. Z., & Md Din, M. F. bin. (2024). Comprehensive Insight into the Failure Mechanisms, Modes, and Material Selection of Steam Turbine Blades. Journal of Current Science and Technology, 14(3), Article 47. https://doi.org/10.59796/jcst.V14N3.2024.47