Comprehensive Insight into the Failure Mechanisms, Modes, and Material Selection of Steam Turbine Blades
DOI:
https://doi.org/10.59796/jcst.V14N3.2024.47Keywords:
blade material, creep, erosion, failure mechanisms, fatigue, material selection, steam turbine bladeAbstract
Addressing the critical issue of turbine blade failures, particularly in steam turbine systems, this comprehensive review delves into examining and analyzing various failure mechanisms associated with steam turbine blades. The discussion extends to the mode utilized in investigating these failures, with a specific focus on the crucial role of steam turbines in power generation. The review synthesizes various studies that have explored suitable blade materials for optimized performance and reduced failure risks. Findings reveal common failures such as thermal stress, mechanical stress, corrosion, erosion, fatigue, and creep in turbine blades and hubs. Consequently, the review serves as a valuable resource, providing insights into failure mechanisms and advocating for the implementation of suitable materials to enhance the reliability and performance of steam turbine blades.
References
Abdollahzadeh Jamalabadi, M. Y. (2016). Thermal radiation effects on creep behavior of the turbine blade. Multidiscipline Modeling in Materials and Structures, 12(2), 291–314. https://doi.org/10.1108/MMMS-09-2015-0053
Adnyana, D. N. (2018). Corrosion Fatigue of a Low-Pressure Steam Turbine Blade. Journal of Failure Analysis and Prevention, 18(1), 162–173. https://doi.org/10.1007/s11668-018-0397-5
Azeez, A. (2021). High-Temperature Fatigue in a Steam Turbine Steel: Modelling of Cyclic Deformation and Crack Closure. Licentiate dissertation, Linköping University Electronic Press. https://doi.org/10.3384/lic.diva-173354
Azimian, M., & Bart, H. J. (2016). Computational analysis of erosion in a radial inflow steam turbine. Engineering Failure Analysis, 64, 26–43. https://doi.org/10.1016/j.engfailanal.2016.03.004
Banaszkiewicz, M. (2018). Numerical investigations of crack initiation in impulse steam turbine rotors subject to thermo-mechanical fatigue. Applied Thermal Engineering, 138, 761–773. https://doi.org/10.1016/j.applthermaleng.2018.04.099
Benammar, S., & Tee, K. F. (2023). Failure diagnosis of rotating Machines for steam turbine in Cap-Djinet thermal power plant. Engineering Failure Analysis, 149, 1-18. https://doi.org/10.1016/j.engfailanal.2023.107284
Bhagi, L. K., Rastogi, V., Gupta, P., & Pradhan, S. (2018). Dynamic stress analysis of L-1 low pressure steam turbine blade: mathematical modelling and finite element method. Materials Today: Proceedings, 5(14), 28117-28126. https://doi.org/10.1016/j.matpr.2018.10.05
Bogdan, M., Błachnio, J., Kułaszka, A., & Zasada, D. (2021). Investigation of the relationship between degradation of the coating of gas turbine blades and its surface color. Materials, 14(24), Article 7843. https://doi.org/10.3390/ma14247843
Cano, S., Rodríguez, J. A., Rodríguez, J. M., García, J. C., Sierra, F. Z., Casolco, S. R., & Herrera, M. (2019). Detection of damage in steam turbine blades caused by low cycle and strain cycling fatigue. Engineering Failure Analysis, 97, 579–588. https://doi.org/10.1016/j.engfailanal.2019.01.015
Choi, W., Yoon, H., & Youn, B. D. (2020). Operation-Adaptive Damage Assessment of Steam Turbines Using a Nonlinear Creep-Fatigue Interaction Model. IEEE Access, 8, 126776–126783. https://doi.org/10.1109/ACCESS.2020.3008209
Chowdhury, T. S., Mohsin, F. T., Tonni, M. M., Mita, M. N. H., & Ehsan, M. M. (2023). A critical review on gas turbine cooling performance and failure analysis of turbine blades. International Journal of Thermofluids, 18, Article 100329. https://doi.org/10.1016/j.ijft.2023.100329
Damanik, N., & Dahlan, H. (2021). Failure Investigation and Crack Propagation Analysis of LP Blade Steam Turbine 220 MW. Key Engineering Materials, 876, 67-76. https://doi.org/10.4028/www.scientific.net/KEM.876.67
Fameso, F., Desai, D., Kok, S., Armfield, D., & Newby, M. (2022). Residual Stress Enhancement by Laser Shock Treatment in Chromium-Alloyed Steam Turbine Blades. Materials, 15(16), Article 5682. https://doi.org/10.3390/ma15165682
Gong, J. G., Guo, S. S., Gao, F. H., Niu, T. Y., & Xuan, F. Z. (2021). Creep damage and interaction behavior of neighboring notches in components at elevated temperature. Engineering Fracture Mechanics, 256, Article 107996. https://doi.org/10.1016/j.engfracmech.2021.107996
He, Q., Xue, S., He, H., Hu, F., Gao, H. C., & Hu, W. (2023). Fatigue fracture failure analysis of 12Cr12Mo steam turbine blade. Engineering Failure Analysis, 150, 1-8. https://doi.org/10.1016/j.engfailanal.2023.107356
Hosseini, S. A., Lakzian, E., & Nakisa, M. (2023). Multi-objective optimization of supercooled vapor suction for decreasing the nano-water droplets in the steam turbine blade. International Communications in Heat and Mass Transfer, 142, Article 106613. https://doi.org/10.1016/j.icheatmasstransfer.2023.106613
Hosseinizadeh, S. E., Ghamati, E., Jahangiri, A., Majidi, S., Khazaee, I., & Faghih Aliabadi, M. A. (2023). Reduction of water droplets effects in steam turbine blade using multi-objective optimization of hot steam injection. International Journal of Thermal Sciences, 187, 1-20. https://doi.org/10.1016/j.ijthermalsci.2023.108155
Ilieva, G. I. (2016). Erosion failure mechanisms in turbine stage with twisted rotor blade. Engineering Failure Analysis, 70, 90–104. https://doi.org/10.1016/j.engfailanal.2016.07.008
Kumaraswamy, K., & Raju, A. S. N. (2019) Design and Vibrational Analysis of Steam Turbine High Pressure Moving Blade. International Journal of Research in Engineering, Science, and Management, 2(5), 731-737.
Katinić, M., & Kozak, D. (2018). Steam turbine moving blade failure caused by corrosion fatigue - Case history. Procedia Structural Integrity, 13, 2040–2047. https://doi.org/10.1016/j.prostr.2018.12.211
Krechkovska, H., Hredil, M., Student, O., Svirska, L., Krechkovska, S., Tsybailo, I., & Solovei, P. (2023). Peculiarities of fatigue fracture of high-alloyed heat-resistant steel after its operation in steam turbine rotor blades. International Journal of Fatigue, 167, Article 107341. https://doi.org/10.1016/j.ijfatigue.2022.107341
Kshirsagar, R., & Prakash, R. (2019). Prediction of corrosion-based damages in turbine blades using modal and harmonic analyses. Materials Today: Proceedings, 46, 10093–10101. https://doi.org/10.1016/j.matpr.2021.07.417
Kumar, M. Y., & Reddy, M. V. R. (2022). Structural & Thermal Analysis of Different Materials of Steam Turbine Blade Shaft using Finite Element Methods. AIP Conference Proceedings, 2648, 1350-6307. https://doi.org/10.1063/5.0114558
Kumar, M. Y., Saheb, S. H., & Reddy, M. V. R. (2020). Transient Thermal Analysis of the Turbine Blade. Global Journal of Researches in Engineering, 20(3), 41-46.
Leyzerovich, A. S. (2021). Steam turbines for modern fossil-fuel power plants. New York: River Publishers. https://doi.org/10.1201/9781003151388.
Mabruri, E., Sigit, H. M., Anwar, M. S., Prasetyo, M. A., Nikitasari, A., & Fretes, A. De. (2020). Pitting Corrosion Resistance of CA6NM and 410 Martensitic Stainless Steels in Various Environments. IOP Conference Series: Materials Science and Engineering, 858, Article 012049. https://doi.org/10.1088/1757-899X/858/1/012049
Marketresearch.com. (2023). Market research. Retrieved June 9, 2023, from https://www.marketresearch.com/Grand-View-Research-v4060/Steam-Turbine-Size-Share-Trends-34336939/
Mudang, M., Hamzah, E., Bakhsheshi-Rad, H. R., & Berto, F. (2021). Effect of heat treatment on microstructure and creep behavior of Fe-40Ni-24Cr alloy. Applied Sciences, 11(17), Article 7951. https://doi.org/10.3390/app11177951
Mukherjee, A., Bhargava, N., Mathur, P., Varun, K., & Prabu, S. S. (2022). Investigation on Performance Evaluation and Thermal and Structural Analysis of Steam Turbine Blades. ECS Transactions, 107(1), 18435–18445. https://doi.org/ 10.1149/10701.18435ecst
Plesiutschnig, E., Fritzl, P., Enzinger, N., & Sommitsch, C. (2016). Fracture analysis of a low pressure steam turbine blade. Case Studies in Engineering Failure Analysis, 5, 39-50. https://doi.org/10.1016/j.csefa.2016.02.001
Prabhunandan, G. S., & Byregowda, H. V. (2018). Dynamic Analysis of a Steam Turbine with Numerical Approach. Materials Today: Proceedings, 5(2), 5414–5420. https://doi.org/10.1016/j.matpr.2017.12.128
Puspasari, V., Prasetyo, M. A., Nikitasari, A., Mabruri, E., & Anwar, M. S. (November 19–20, 2021). Effect of tempering treatment on pitting corrosion resistance of modified cast CA6NM stainless steel in 3.5 % NaCl solution [Conference presentation]. The 4th International Seminar on Metallurgy And Materials (ISMM2020): Accelerating Research and Innovation on Metallurgy and Materials for Inclusive and Sustainable Industry, Tangerang Selatan, Indonesia. https://doi.org/10.1063/5.0060174
Quintanar-Gago, D. A., Nelson, P. F., Díaz-Sánchez, Á., & Boldrick, M. S. (2021). Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network. Reliability Engineering and System Safety, 207, Article 107329. https://doi.org/10.1016/j.ress.2020.107329
Rani, S., Agrawal, A. K., & Rastogi, V. (2019). Vibration analysis for detecting failure mode and crack location in first stage gas turbine blade. Journal of Mechanical Science and Technology, 33, 1–10. https://doi.org/10.1007/s12206-018-1201-x
Richardson, A. (2014). The evolution of the Parsons steam turbine. Cambridge, UK: Cambridge University Press.
Rodrígez Ramírez, J. A., Clemente Mirafuentes, C. M., Zalapa Garibay, M. A., García Castrejón, J. C., & Guillén Anaya, L. G. (2023). Corrosion Fatigue Analysis in Power Steam Turbine Blade. Metals, 13(3), Article 544. https://doi.org/10.3390/met13030544
Sangode, S. (2021). Design and Analysis of Steam Turbine Rotor Blade. International Journal for Research in Applied Science and Engineering Technology, 9(8), 2511–2518. https://doi.org/10.22214/ijraset.2021.37806
Sherfedinov, R., Ishchenko, M., Slaston, L., & Alyokhina, S. (2023). Working blades development for the last stages of steam turbine low pressure cylinder. Academic Journal of Manufacturing Engineering, 21(1), 126-131.
Shukla, A., & Harsha, S. P. (2016). Vibration Response Analysis of Last Stage LP Turbine Blades for Variable Size of Crack in Root. Procedia Technology, 23, 232–239. https://doi.org/10.1016/j.protcy.2016.03.022
Singh, S., Kharub, M., Singh, J., Singh, J., & Jangid, V. (2021). Brief survey on mechanical failure and preventive mechanism of turbine blades. Materials Today: Proceedings, 38, 2515-2524. https://doi.org/10.1016/j.matpr.2020.07.546.
Slaston, L. O., Ishchenko, M. G., Sherfedinov, R. B., & Alyokhina, S. V. (2020). Basic approaches to the choice of material for working blades of the last stages of the LPC of powerful steam turbines. Problems of Atomic Science and Technology, 125(1), 215–219. https://doi.org/10.46813/2020-125-215
Tanuma, T. (2022), Advances in Steam Turbines for Modern Power Plants(2ed). Woodhead Publishing Series in Energy (pp. 639–642). https://doi.org/10.1016/B978-0-12-824359-6.00026-3
Teuber, H., Barnikel, J., Dankert, M., David, W., Ghicov, A., & Voss, S. (2019). Development of a new high-strength steel for low pressure steam turbine end-stage blades. Journal of Engineering for Gas Turbines and Power, 141(1), 1-20. https://doi.org/10.1115/1.4040849
Thijel, J. F., Al-hafidh, M., & Abdul-Husain, H. A. (2021). Case study: Investigation of the fracture of low pressure steam turbine blade. International Journal of Engineering Science Invention (IJESI), 10(04), 28-33. https://doi.org/10.35629/6734-1004032833
Tian, L., Hai, Y., Qingyue, Z., & Qin, Y. (2019). Non-destructive testing Techniques based on Failure Analysis of Steam Turbine Blade. IOP Conference Series: Materials Science and Engineering, 576(1), 1-7. https://doi.org/10.1088/1757-899X/576/1/012038
USAGov. (2023). U.S. Department of Energy. Retrieved June 9, 2023, from https://www.usa.gov/agencies/u-s-department-of-energy
Wang, W. Z., Buhl, P., Klenk, A., & Liu, Y. Z. (2016). The effect of in-service steam temperature transients on the damage behavior of a steam turbine rotor. International Journal of Fatigue, 87, 471–483. https://doi.org/10.1016/j.ijfatigue.2016.02.040
Xie, L., Tian, F., Liu, J., & Chen, H. (2020). Analysis on the Causes of Cracking at the Last Stage Blade of the Low-pressure Rotor in thermal power plant. E3S Web of Conferences, 165, 1-4. https://doi.org/10.1051/e3sconf/202016506010
Yadav, K. K., Singh, D., Priyadarshi, P., Kumar, M., Kumar, V., Sharma, P. K., & Sharma, I. D. (2018). Studies and Analysis of Effect of Foreign Particles on the Parts of Steam Turbine. International Journal of Applied Engineering Research,13(6), 386-395. Retrieved from http://www.ripublication.com
Zhang, C. Y., Yuan, Z. S., Wang, Z., Fei, C. W., & Lu, C. (2019). Probabilistic fatigue/creep optimization of turbine bladed disk with fuzzy multi-extremum response surface method. Materials, 12(20), 1-14. https://doi.org/10.3390/ma12203367
Zhang, G., Wang, X., Wiśniewski, P., Chen, J., Qin, X., & Dykas, S. (2023). Effect of NaCl presence caused by salting out on the heterogeneous-homogeneous coupling non-equilibrium condensation flow in a steam turbine cascade. Energy, 263, 1-13. https://doi.org/10.1016/j.energy.2022.126074
Zhang, Z., Yang, B., Zhang, D., & Xie, Y. (2021). Experimental investigation on the water droplet erosion characteristics of blade materials for steam turbine. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(20), 5103–5115. https://doi.org/10.1177/0954406220979730
Zhao, W., Li, Y., Xue, M., Wang, P., & Jiang, J. (2018). Vibration analysis for failure detection in low pressure steam turbine blades in nuclear power plant. Engineering Failure Analysis, 84, 11–24. https://doi.org/10.1016/j.engfailanal.2017.10.009
Zhu, X., Chen, H., Xuan, F., & Chen, X. (2019). On the creep fatigue and creep rupture behaviours of 9–12% Cr steam turbine rotor. European Journal of Mechanics, A/Solids, 76, 263–278. https://doi.org/10.1016/j.euromechsol.2019.04.017
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Journal of Current Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.