Clinicopathological significance of FANCA mRNA expression in Thai patients with breast cancer

Authors

  • Pensri Saelee Division of Research and Academic Support, National Cancer Institute, Bangkok 10400, Thailand
  • Tanett Pongtheerat Unit of Biochemistry, Department of Medical Sciences, Faculty of Science, Rangsit University, Pathum Thani 12000, Thailand
  • Thanet Sophonnithiprasert Unit of Biochemistry, Department of Medical Sciences, Faculty of Science, Rangsit University, Pathum Thani 12000, Thailand
  • Worapoj Jinda Division of Research and Academic Support, National Cancer Institute, Bangkok 10400, Thailand

Keywords:

breast cancer, clinicopathological significance, FANCA mRNA expression, tumor suppressor gene

Abstract

The Fanconi anemia complementation group A (FANCA) gene is a potential tumor suppressor gene due to the repair of DNA damage mechanisms, and it remains a candidate as a cancer predisposition gene of breast cancer. In this study, the altered FANCA mRNA expression and the association with their clinicopathological data were investigated in patients with breast cancer. A total of 79 breast tumors from patients who did not receive chemotherapy or radiotherapy and their corresponding normal breast tissues were determined for the FANCA mRNA expression level using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The association between FANCA mRNA expression and patient clinicopathological features were analyzed using Chi-square tests and survival analysis was examined by the Kaplan-Meier method and Cox regression analysis. The FANCA mRNA expression level was overexpressed and underexpressed in breast cancers, with the frequency of 20 out of 72 (27.8%) and 7 out of 59 (11.9%), respectively. The FANCA over-expression was found associated with triple-negative breast cancer patients (P=0.048), Odds ratio; 95%CI (3.15; 0.98-10.09). Additionally, FANCA under-expression has been observed with low tumor grade I (P=0.035). This study concluded that the over-expression of FANCA mRNA expression used for screening hormone receptor status potentially was associated with triple negative-breast cancer while under-expression used for tumor grading biomarkers potentially in breast cancer patients was associated with low tumor grade.

References

Bravo-Navas, S., Yáñez, L., Romón, Í., & Pipaón, C. (2019). Elevated FANCA expression determines a worse prognosis in chronic lymphocytic leukemia and interferes with p53 function. FASEB Journal, 33(9), 10477-10489. DOI: https://doi.org/10.1096/fj.201802439RR

Chen, H., Zhang, S., & Wu, Z. (2014). Fanconi anemia pathway defects in inherited and sporadic cancers. Translational Pediatrics, 3(4), 300-304. DOI: https://doi.org/10.3978/j.issn.2224-4336.2014.07.05

Condie, A., Powles, R. L., Hudson, C. D., Shepherd, V., Bevan, S., Yuille, M. R., … & Houlston, R. S. (2002). Analysis of the Fanconi anaemia complementation group A gene in acute myeloid leukaemia. Leukemia & Lymphoma, 43(9), 1849-1853. https://doi.org/10.1080/1042819021000009274

Crossan, G. P., & Patel, K. J. (2012). The Fanconi anaemia pathway orchestrates incisions at sites of crosslinked DNA. Journal of Pathology, 226(2), 326-337. DOI: https://doi.org/10.1002/path.3002

Dong, G., Wang, D., Liang, X., Gao, H., Wang, L., Yu, X., & Liu, J. (2014). Factors related to survival rates for breast cancer patients. International Journal of Clinical and Experimental Medicine, 7(10), 3719-3724.

Dörk, T., Peterlongo, P., Mannermaa, A., Bolla, M. K., Wang, Q., Dennis, J., ... & Torres, D. (2019). Two truncating variants in FANCC and breast cancer risk. Scientific reports, 9(1), 1-14. https://doi.org/10.1038/s41598-019-48804-y

D'Andrea, A. D. (2010). Susceptibility pathways in Fanconi's anemia and breast cancer. New England Journal of Medicine, 362(20), 1909-1919. https://doi.org/10.1056/NEJMra0809889

Fang, C. B., Wu, H. T., Zhang, M. L., Liu, J., & Zhang, G. J. (2020). Fanconi anemia pathway: mechanisms of breast cancer predisposition development and potential therapeutic targets. Frontiers in cell and developmental biology, 8, 160. https://doi.org/10.3389/fcell.2020.00160

Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., … & Ren, G. (2018). Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes & Diseases, 5(2), 77-106. https://doi.org/10.1016/j.gendis.2018.05.001

Han, S. S., Tompkins, V. S., Son, D. J., Han, S., Yun, H., Kamberos, N. L., … & Janz, S. (2015). CDKN1A and FANCD2 are potential oncotargets in Burkitt lymphoma and multiple myeloma. Experimental hematology & oncology, 4(1), 1-10. https://doi.org/10.1186/s40164-015-0005-2

Hongo, H., Kosaka, T., Aimono, E., Nishihara, H., & Oya, M. (2020). Aggressive prostate cancer with somatic loss of the homologous recombination repair gene FANCA: a case report. Diagnostic pathology, 15(1), 1-4. https://doi.org/10.1186/s13000-019-0916-z

Jacobson, J. A., Danforth, D. N., Cowan, K. H., d'Angelo, T., Steinberg, S. M., Pierce, L., ... & Okunieff, P. (1995). Ten-year results of a comparison of conservation with mastectomy in the treatment of stage I and II breast cancer. The New England journal of medicine, 332(14), 907–911. https://doi.org/10.1056/NEJM199504063321402

Kao, W. H., Riker, A. I., Kushwaha, D. S., Ng, K., Enkemann, S. A., Jove, R., … & Matta, J. L. (2011). Upregulation of Fanconi anemia DNA repair genes in melanoma compared with non-melanoma skin cancer. Journal of Investigative Dermatology, 131(10), 2139-2142. https://doi.org/10.1038/jid.2011.181

Lin, I. G., & Hsieh, C. L. (2001). Chromosomal DNA demethylation specified by protein binding. EMBO Reports, 2(2), 108-112. https://doi.org/10.1093/embo-reports/kve023

Liu, W., Palovcak, A., Li, F., Zafar, A., Yuan, F., & Zhang, Y. (2020). Fanconi anemia pathway as a prospective target for cancer intervention. Cell & Bioscience, 10, 39. https://doi.org/10.1186/s13578-020-00401-7

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262

Niraj, J., Färkkilä, A., & D'Andrea, A. D. (2019). The Fanconi Anemia Pathway in Cancer. Annual Review of Cancer Biology, 3, 457-478. https://doi.org/10.1146/annurev-cancerbio-030617-050422

Paluszczak, J., & Baer-Dubowska, W. (2006). Epigenetic diagnostics of cancer - the application of DNA methylation markers. Journal of Applied Genetics, 47(4), 365-375. https://doi.org/10.1007/BF03194647

Rojanamatin, J., Ukranum, W., Supaattagorn, P., Chiawiriyabunya, I., Wongsena, M., Chaiwerawattana, A., … & Buasom, R. (2021). Cancer in Thailand Vol X, 2016-2018. Bangkok, Thailand: Produced by Medical Record and Databased Cancer Unit, National Cancer Institute.

Saelee, P., Chaiwerawattana, A., Ogawa, K., Cho, Y. M., Tiwawech, D., & Suktangman, V. (2014). Clinicopathological significance of BRCA1 promoter hypermethylation in Thai breast cancer patients. Asian Pacific Journal of Cancer Prevention, 15(24), 10585-10589. https://doi.org/10.7314/apjcp.2014.15.24.10585

Solomon, P. J., Margaret, P., Rajendran, R., Ramalingam, R., Menezes, G. A., Shirley, A. S., … & Seo S. H. (2015). A case report and literature review of Fanconi Anemia (FA) diagnosed by genetic testing. Italian Journal of Pediatrics, 41(1), 38. https://doi.org/10.1186/s13052-015-0142-6

Solyom, S., Winqvist, R., Nikkilä, J., Rapakko, K., Hirvikoski, P., Kokkonen, H., … & Pylkäs, K. (2011). Screening for large genomic rearrangements in the FANCA gene reveals extensive deletion in a Finnish breast cancer family. Cancer Letters, 302(2), 113-118. https://doi.org/10.1016/j.canlet.2010.12.020

Swarts, D. R. A., Neste, L. V., Henfling, M. E. R., Eijkenboom, I., Eijk, P. P., van Velthuysen, M., & Speel, E. M. (2013). An exploration of pathways involved in lung carcinoid progression using gene expression profiling. Carcinogenesis. 34(12), 2726-2737. https://doi.org/10.1093/carcin/bgt271

Thompson, E., Dragovic, R. L., Stephenson, S. A., Eccles, D. M., Campbell, I. G., & Dobrovic, A. (2005). A novel duplication polymorphism in the FANCA promoter and its association with breast and ovarian cancer. BMC cancer, 5(1), 1-6. https://doi.org/10.1186/1471-2407-5-43

Tischkowitz, M. D., Morgan, N. V., Grimwade, D., Eddy, C., Ball, S., Vorechovsky, I., … & Methew, C. G. (2004). Deletion and reduced expression of the Fanconi anemia FANCA gene in sporadic acute myeloid leukemia. Leukemia, 18(3), 420-425. DOI: https://doi.org/10.1038/sj.leu.2403280

Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., & Leunissen, J. A. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic acids research, 35(suppl_2), W71-W74. https://doi.org/10.1093/nar/gkm306

Wreesman, V. B., Estilo, C., Eisele, D. W., Singh, B., & Wang, S. J. (2007). Downregulation of Fanconi anemia genes in sporadic head and neck squamous cell carcinoma. Journal for Oto-rhino-laryngology and Its Related Specialties, 69(4), 218-225. https://doi.org/10.1159/000101542

Yin, J., Liu, H., Liu, Z., Wang, L. E., Chen, W. V., Zhu, D., … & Wei, Q. (2015). Genetic variants in fanconi anemia pathway genes BRCA2 and FANCA predict melanoma survival. Journal of Investigative Dermatology, 135(2), 542-550. https://doi.org/10.1038/jid.2014.416

Downloads

Published

2022-12-26

How to Cite

Saelee, P., Pongtheerat, T., Sophonnithiprasert, T., & Jinda, W. (2022). Clinicopathological significance of FANCA mRNA expression in Thai patients with breast cancer. Journal of Current Science and Technology, 12(3), 408–416. retrieved from https://ph04.tci-thaijo.org/index.php/JCST/article/view/254

Issue

Section

Research Article