A review of churn prediction models using different machine learning and deep learning approaches in cloud environment
Keywords:
CCP-customer churn-prediction, deep-learning, DNN-deep neural-networks, feature classification, feature-selection, LSTM-long short-term memory, machine-learningAbstract
Customer churn is portrayed as the event that occurs when the customer quits the organization's services or products. The reasons for this dissatisfaction are the higher costs, low-level understanding of service plan, bad support, high subscription rate, and service quality, etc., Companies ought to be capable in the prediction of that customer behavior perfectly to retain on-hand customers and minimize the churn rate of customers in before occurrence. The study elucidates a review analysis of various churn prediction models, striving in different sectors through utilizing different machine-learning approaches, Deep-learning algorithms, metaheuristic optimization techniques, feature extraction-based methods, and hybrid approaches. The paper also surveys commonly utilized machine-learning techniques on a cloud computing platform to determine customer churn patterns. The churn prediction model, with better precision results, facilitates spotting firms which are near to getting churn and directing firms' focus to minimize overall churn percentage, shaping retention policies, and boosting the company's revenue.
References
Agrawal, S., Das, A., Gaikwad, A., & Dhage, S. (2018, July). Customer churn prediction modelling based on behavioural patterns analysis using deep learning. In 2018 International conference on smart computing and electronic enterprise (ICSCEE) (pp. 1-6). IEEE. https://doi.org/10.1109/ICSCEE.2018.8538420
Ahmad, A. K., Jafar, A., & Aljoumaa, K. (2019). Customer churn prediction in telecom using machine learning in big data platform. Journal of Big Data, 6(1), 1-24. DOI: https://doi.org/10.1186/s40537-019-0191-6
Ahmed, U., Khan, A., Khan, S. H., Basit, A., Haq, I. U., & Lee, Y. S. (2019). Transfer learning and meta classification based deep churn prediction system for telecom industry. arXiv preprint arXiv:1901.06091. https://doi.org/10.48550/arXiv.1901.06091
Alboukaey, N., Joukhadar, A., & Ghneim, N. (2020). Dynamic behavior based churn prediction in mobile telecom. Expert Systems with Applications, 162, 113779. https://doi.org/10.1016/j.eswa.2020.113779
Amin, A., Al-Obeidat, F., Shah, B., Adnan, A., Loo, J., & Anwar, S. (2019a). Customer churn prediction in telecommunication industry using data certainty. Journal of Business Research, 94, 290-301. DOI: https://doi.org/10.1016/j.jbusres.2018.03.003
Amin, A., Anwar, S., Adnan, A., Nawaz, M., Alawfi, K., Hussain, A., & Huang, K. (2017). Customer churn prediction in the telecommunication sector using a rough set approach. Neurocomputing, 237, 242-254. https://doi.org/10.1016/j.neucom.2016.12.009
Amin, A., Anwar, S., Adnan, A., Nawaz, M., Howard, N., Qadir, J., ... & Hussain, A. (2016). Comparing oversampling techniques to handle the class imbalance problem: A customer churn prediction case study. IEEE Access, 4, 7940-7957. https://doi.org/10.1109/ACCESS.2016.2619719
Amin, A., Khan, C., Ali, I., & Anwar, S. (2014). Customer churn prediction in telecommunication industry: with and without counter-example. In Mexican international conference on artificial intelligence (pp. 206-218). Springer, Cham. https://doi.org/10.1007/978-3-319-13650-9_19
Amin, A., Shah, B., Abbas, A., Anwar, S., Alfandi, O., & Moreira, F. (2019b). Features weight estimation using a genetic algorithm for customer churn prediction in the telecom sector. In World conference on information systems and technologies (pp. 483-491). Springer, Cham. https://doi.org/10.1007/978-3-030-16184-2_46
Amin, A., Shah, B., Khattak, A. M., Moreira, F. J. L., Ali, G., Rocha, A., & Anwar, S. (2019c). Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods. International Journal of Information Management, 46, 304-319. DOI: https://doi.org/10.1016/j.ijinfomgt.2018.08.015
Amuda, K. A., & Adeyemo, A. B. (2019). Customers churn prediction in financial institution using artificial neural network. arXiv preprint arXiv:1912.11346.
Banday, S. A., & Khan, S. (2021). Evaluation Study of Churn Prediction Models for Business Intelligence. Big Data Analytics (pp. 201-213). Auerbach Publications.
Britto, M. M. J., & Gobinath, D. R. (2021). Improved Churn Prediction Model In Banking Industry And Comparison Of Deep Learning Algorithms. International Journal of Aquatic Science, 12(2), 2521-2529.
Chabumba, D. R., Jadhav, A., & Ajoodha, R. (2021). Predicting telecommunication customer churn using machine learning techniques. In Interdisciplinary Research in Technology and Management (pp. 625-636): CRC Press. https://doi.org/10.1201/9781003202240-98
Dalmia, H., Nikil, C. V., & Kumar, S. (2020). Churning of Bank Customers Using Supervised Learning Innovations in Electronics and Communication Engineering (pp. 681-691): Springer, Singapore. https://doi.org/10.1007/978-981-15-3172-9_64
De Caigny, A., Coussement, K., & De Bock, K. W. (2018). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. European Journal of Operational Research, 269(2), 760-772. https://doi.org/10.1016/j.ejor.2018.02.009
Domingos, E., Ojeme, B., & Daramola, O. (2021). Experimental Analysis of Hyperparameters for Deep Learning-Based Churn Prediction in the Banking Sector. Computation, 9(3), 34. https://doi.org/10.3390/computation9030034
Dwiyanti, E., & Ardiyanti, A. (2017). Handling imbalanced data in churn prediction using rusboost and feature selection (case study: Pt. telekomunikasi indonesia regional 7). In Recent Advances on Soft Computing and Data Mining: The Second International Conference on Soft Computing and Data Mining (SCDM-2016), Bandung, Indonesia, August 18-20, 2016 Proceedings Second (pp. 376-385). Springer International Publishing. https://doi.org/10.1007/978-3-319-51281-5_38
Ebrah, K., & Elnasir, S. (2019). Churn prediction using machine learning and recommendations plans for telecoms. Journal of Computer and Communications, 7(11), 33-53. https://doi.org/10.4236/jcc.2019.711003
Faris, H. (2018). A hybrid swarm intelligent neural network model for customer churn prediction and identifying the influencing factors. Information, 9(11), 288. https://doi.org/10.3390/info9110288
Faritha Banu, J., Neelakandan, S., Geetha, B., Selvalakshmi, V., Umadevi, A., & Martinson, E. O. (2022). Artificial Intelligence Based Customer Churn Prediction Model for Business Markets. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/1703696
Ghobaei-Arani, M. (2021). A workload clustering based resource provisioning mechanism using Biogeography based optimization technique in the cloud based systems. Soft Computing, 25(5), 3813-3830. DOI: https://doi.org/10.1007/s00500-020-05409-2
Ghobaei-Arani, M., & Shahidinejad, A. (2021). An efficient resource provisioning approach for analyzing cloud workloads: a metaheuristic-based clustering approach. The Journal of Supercomputing, 77(1), 711-750. DOI: https://doi.org/10.1007/s11227-020-03296-w
Ghobaei-Arani, M., Shamsi, M., & Rahmanian, A. A. (2017). An efficient approach for improving virtual machine placement in cloud computing environment. Journal of Experimental & Theoretical Artificial Intelligence, 29(6), 1149-1171. DOI: https://doi.org/10.1080/0952813X.2017.1310308
Ghobaei-Arani, M., & Souri, A. (2019). LP-WSC: a linear programming approach for web service composition in geographically distributed cloud environments. The Journal of Supercomputing, 75(5), 2603-2628. DOI: https://doi.org/10.1007/s11227-018-2656-3
Ghobaei-Arani, M., Souri, A., Baker, T., & Hussien, A. (2019). ControCity: an autonomous approach for controlling elasticity using buffer Management in Cloud Computing Environment. IEEE Access, 7, 106912-106924. https://doi.org/10.1109/ACCESS.2019.2932462
Gui, C. (2017). Analysis of imbalanced data set problem: The case of churn prediction for telecommunication. Artificial Intelligence Research, 6(2), 93-. https://doi.org/10.5430/air.v6n2p93
Hartati, E. P., & Bijaksana, M. A. (2018). Handling imbalance data in churn prediction using combined SMOTE and RUS with bagging method. In Journal of Physics: Conference Series (Vol. 971, No. 1, p. 012007). IOP Publishing. https://doi.org/10.1088/1742-6596/971/1/012007
He, Y., Xiong, Y., & Tsai, Y. (2020). Machine learning based approaches to predict customer churn for an insurance company. In 2020 Systems and Information Engineering Design Symposium (SIEDS) (pp. 1-6). IEEE. https://doi.org/10.1109/SIEDS49339.2020.9106691
Ibrahim, K., Aborizka, M., & Maghraby, F. (2018). Prediction of users charging time in cloud environment using machine learning. International Journal of Intelligent Computing and Information Sciences, 18(2), 39-57. https://doi.org/10.21608/ijicis.2018.30121
Iqbal, A., & Aftab, S. (2020). A Classification Framework for Software Defect Prediction Using Multi-filter Feature Selection Technique and MLP. International Journal of Modern Education & Computer Science, 12(1), 18-25. https://doi.org/10.5815/ijmecs.2020.01.03
Jain, H., Khunteta, A., & Srivastava, S. (2021). Telecom churn prediction and used techniques, datasets and performance measures: a review. Telecommunication Systems, 76(4), 613-630. https://doi.org/10.1007/s11235-020-00727-0
Jeyakarthic, M., & Venkatesh, S. (2020). An Effective Customer Churn Prediction Model using Adaptive Gain with Back Propagation Neural Network in Cloud Computing Environment. Journal of Research on the Lepidoptera, 51(1), 386-399. https://doi.org/10.36872/LEPI/V51I1/301034
Joel, M. R., & Srinath, M. (2021). Optimizing profit by retaining customers using machine learning techniques. J. Sci. Trans. Environ. Technov, 14(4), 193-198. https://doi.org/10.56343/STET.116.014.004.007
Karvana, K. G. M., Yazid, S., Syalim, A., & Mursanto, P. (2019, October). Customer churn analysis and prediction using data mining models in banking industry. In 2019 International Workshop on Big Data and Information Security (IWBIS) (pp. 33-38). IEEE. DOI: 10.1109/IWBIS.2019.8935884
Kaur, K., & Vashisht, S. (2015). A novel approach for providing the customer churn prediction model using enhanced boosted trees technique in cloud computing. International Journal of Computer Applications, 114(7), 1-7. https://doi.org/10.5120/19987-6449
Khodabandehlou, S., & Rahman, M. Z. (2017). Comparison of supervised machine learning techniques for customer churn prediction based on analysis of customer behavior. Journal of Systems and Information Technology, 19(1/2), 65-93. https://doi.org/10.1108/JSIT-10-2016-0061
Mishachandar, B., & Kumar, K. A. (2018). Predicting customer churn using targeted proactive retention. International Journal of Engineering & Technology, 7(2.27), 69. https://doi.org/10.14419/ijet.v7i2.27.10180
Nguyen, N. N., & Duong, A. T. (2021). Comparison of Two Main Approaches for Handling Imbalanced Data in Churn Prediction Problem. Journal of advances in information technology, 12(1), 1-7. https://doi.org/10.12720/jait.12.1.29-35
Pustokhina, I. V., Pustokhin, D. A., Aswathy, R. H., Jayasankar, T., Jeyalakshmi, C., Díaz, V. G., & Shankar, K. (2021a). Dynamic customer churn prediction strategy for business intelligence using text analytics with evolutionary optimization algorithms. Information Processing & Management, 58(6), 102706. https://doi.org/10.1016/j.ipm.2021.102706
Pustokhina, I. V., Pustokhin, D. A., Nguyen, P. T., Elhoseny, M., & Shankar, K. (2021). Multi-objective rain optimization algorithm with WELM model for customer churn prediction in telecommunication sector. Complex & Intelligent Systems, 1-13. DOI: https://doi.org/10.1007/s40747-021-00353-6
Salunkhe, U. R., & Mali, S. N. (2018). A hybrid approach for class imbalance problem in customer churn prediction: A novel extension to under-sampling. International Journal of Intelligent Systems and Applications, 10(5), 71. DOI: 10.5815/ijisa.2018.05.08
Sam, D., Suresh, K. C., Kanya, N., Tamilselvi, C., & Tejasria, M. V. S. L. (2021). An Improved Bank Customer Churn and Loan Prediction Model using Supervised Machine Learning Approach. Turkish Journal of Physiotherapy and Rehabilitation, 32, 3.
Sayed, H., Abdel-Fattah, M. A., & Kholief, S. (2018). Predicting potential banking customer churn using apache spark ML and MLlib packages: a comparative study. IJACSA) International Journal of Advanced Computer Science and Applications, 9(11), 674-677. https://doi.org/10.14569/IJACSA.2018.091196
Shahidinejad, A., Ghobaei-Arani, M., & Esmaeili, L. (2020). An elastic controller using Colored Petri Nets in cloud computing environment. Cluster Computing, 23(2), 1045-1071. https://doi.org/10.1007/s10586-019-02972-8
Shahidinejad, A., Ghobaei-Arani, M., & Masdari, M. (2021). Resource provisioning using workload clustering in cloud computing environment: a hybrid approach. Cluster Computing, 24(1), 319-342. https://doi.org/10.1007/s10586-020-03107-0
Sivasankar, E., & Vijaya, J. (2019). A study of feature selection techniques for predicting customer retention in telecommunication sector. International Journal of Business Information Systems, 31(1), 1-26. https://doi.org/10.1504/IJBIS.2019.099524
Srivastava, P. R., & Eachempati, P. (2021). Intelligent employee retention system for attrition rate analysis and churn prediction: an ensemble machine learning and multi-criteria decision-making approach. Journal of Global Information Management (JGIM), 29(6), 1-29. https://doi.org/10.4018/JGIM.20211101.oa23
Sung, C., Higgins, C. Y., Zhang, B., & Choe, Y. (2017). Evaluating deep learning in chum prediction for everything-as-a-service in the cloud. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 3664-3669). IEEE. https://doi.org/10.1109/IJCNN.2017.7966317
Tarahomi, M., Izadi, M., & Ghobaei-Arani, M. (2021). An efficient power-aware VM allocation mechanism in cloud data centers: a micro genetic-based approach. Cluster Computing, 24(2), 919-934. https://doi.org/10.1007/s10586-020-03152-9
Tofighy, S., Rahmanian, A. A., & Ghobaei‐Arani, M. (2018). An ensemble CPU load prediction algorithm using a Bayesian information criterion and smooth filters in a cloud computing environment. Software: Practice and Experience, 48(12), 2257-2277. https://doi.org/10.1002/spe.2641
Ullah, I., Raza, B., Malik, A. K., Imran, M., Islam, S. U., & Kim, S. W. (2019). A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE Access, 7, 60134-60149. DOI: https://doi.org/10.1109/ACCESS.2019.2914999
Umayaparvathi, V., & Iyakutti, K. (2017). Automated feature selection and churn prediction using deep learning models. International Research Journal of Engineering and Technology (IRJET), 4(3), 1846-1854.
Venkatesh, S., & Jeyakarthic, M. (2020a). Metaheuristic based Optimal Feature Subset Selection with Gradient Boosting Tree Model for IoT Assisted Customer Churn Prediction. Journal of Seybold Report ISSN NO, 1533, 9211.
Venkatesh, S., & Jeyakarthic, M. (2020b). Adagrad Optimizer with Elephant Herding Optimization based Hyper Parameter Tuned Bidirectional LSTM for Customer Churn Prediction in IoT Enabled Cloud Environment. Webology, 17(2), 631-651. DOI: 10.14704/WEB/V17I2/WEB17057
Vijaya, J., & Sivasankar, E. (2019). An efficient system for customer churn prediction through particle swarm optimization based feature selection model with simulated annealing. Cluster Computing, 22(5), 10757-10768. https://doi.org/10.1007/s10586-017-1172-1
Vo, N. N., Liu, S., Li, X., & Xu, G. (2021). Leveraging unstructured call log data for customer churn prediction. Knowledge-Based Systems, 212, 106586. https://doi.org/10.1016/j.knosys.2020.106586
Wael Fujo, S., Subramanian, S., & Ahmad Khder, M. (2022). Customer Churn Prediction in Telecommunication Industry Using Deep Learning. Information Sciences Letters, 11(1), 24. http://dx.doi.org/10.18576/isl/110120
Wu, X., Li, P., Zhao, M., Liu, Y., Crespo, R. G., & Herrera-Viedma, E. (2022). Customer churn prediction for web browsers. Expert Systems with Applications, 118177. https://doi.org/10.1016/j.eswa.2022.118177
Xiahou, X., & Harada, Y. (2022). B2C E-Commerce Customer Churn Prediction Based on K-Means and SVM. Journal of Theoretical and Applied Electronic Commerce Research, 17(2), 458-475. DOI: https://doi.org/10.3390/jtaer17020024
Xu, T., Ma, Y., & Kim, K. (2021). Telecom churn prediction system based on ensemble learning using feature grouping. Applied Sciences, 11(11), 4742. https://doi.org/10.3390/app11114742
Zhang, T., Moro, S., & Ramos, R. F. (2022). A Data-Driven Approach to Improve Customer Churn Prediction Based on Telecom Customer Segmentation. Future Internet, 14(3), 94. https://doi.org/10.3390/fi14030094
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.