The efficacy of povidone-iodine and normal saline on excision wound in mice
Keywords:
collagen production, excision wound, epidermis, histoarchitecture, mice, povidone-iodine, wound healingAbstract
In cleaning wounds, little attention has been given to the solutions, waiting for the natural process without the user agent, but these problems can cause chronic injuries and inflammation. Povidone-iodine is a tropical antiseptic agent that popularly used to prevent infection and aid healing of wounds. However, the effects of povidone-iodine on the histologic change of excision wound healing have not been reported. Therefore, the objective was to assess the histological influences of 10% povidone-iodine ointment on healing process of experiment excision wounds in mice. Albino ICR mice were randomly divided into two groups with six mice each; a normal saline-treated group and a povidone-iodine-treated group. Wounds were created in all mice and treated with normal saline or povidone-iodine once daily for 14 days. The wound areas were measured on days 2, 5, 8, and 14. Then, a percentage of wound contraction was calculated. The histoarchitecture of the wound was observed on days 14 by staining with hematoxylin-eosin and Masson’s trichrome. The results showed that the average percentage of wound contraction of the povidone-iodine-treated group was significantly higher than the normal saline-treated group on days 5, 8, and 14. The histoarchitecture studies of the povidone-iodine-treated group showed a thickening of the epidermis and dense deposition of collagen fiber when compared to the normal saline-treated group. These findings indicated that povidone-iodine treatment could accelerate the wound healing processes.
References
Abd Jalil, M. A., Kasmuri, A. R., & Hadi, H. (2017). Stingless bee honey, the natural wound healer: A review. Skin Pharmacology and Physiology, 30(2), 66-75. https://doi.org/10.1159/000458416
Bigliardi, P., Langer, S., Cruz, J. J., Kim, S. W., Nair, H., & Srisawasdi, G. (2017). An Asian perspective on povidone iodine in wound healing. Dermatology, 233(2-3), 223-233. https://doi.org/10.1159/000479150
Brånemark, P. I., Albrektsson, B., Lindström, J., & Lundborg, G. (1966). Local tissue effects of wound disinfectants. Acta Chir Scand Suppl, 357, 166-76.
Ehrlich, H. P., & Hunt, T. K. (2012). Collagen Organization Critical Role in Wound Contraction. Advances in wound care, 1(1), 3–9. https://doi.org/10.1089/wound.2011.0311
El-Ferjani, R., Ahmad, M., Dhiyaaldeen, S. M., Harun, F. W., Ibrahim, M. Y., Adam, H., ... & Batran, R. A. (2016). In vivo assessment of antioxidant and wound healing improvement of a new schiff base derived Co (ii) complex in rats. Scientific Reports, 6(1), 1-12. https://doi.org/10.1038/srep38748
Gravett, A., Sterner, S., Clinton, J. E., & Ruiz, E. (1987). A trial of povidone-iodine in the prevention of infection in sutured lacerations. Annals of emergency medicine, 16(2), 167-171. https://doi.org/10.1016/S0196-0644(87)80008-2
Guo, S. A., & DiPietro, L. A. (2010). Factors affecting wound healing. Journal of dental research, 89(3), 219-229. https://doi.org/10.1177/0022034509359125
Holloway Jr, G. A., Johansen, K. H., Barnes, R. W., & Pierce, G. E. (1989). Multicenter trial of cadexomer iodine to treat venous stasis ulcer. Western Journal of Medicine, 151(1), 35-38.
Juhász, I. (2002). Experiences with the use of povidone-iodine-containing local therapeutics in dermatological surgery and in the treatment of burns: testing for allergic sensitization in postsurgery patients. Dermatology, 204(Suppl. 1), 52-58. https://doi.org/10.1159/000057726
Kashyap, A., Beezhold, D., Wiseman, J., & Beck, W. C. (1995). Effect of povidone iodine dermatologic ointment on wound healing. The American Surgeon, 61(6), 486-491.
Khan, M. N., & Naqvi, A. H. (2006). Antiseptics, iodine, povidone iodine and traumatic wound cleansing. Journal of tissue viability, 16(4), 6-10. https://doi.org/10.1016/S0965-206X(06)64002-3
Kumar, R., Katoch, S. S., & Sharma, S. (2006). Beta-adrenoceptor agonist treatment reverses denervation atrophy with augmentation of collagen proliferation in denervated mice gastrocnemius muscle. Indian Journal of Experimental Biology, 44(5), 371-376.
Kuo, T. Y., Huang, C. C., Shieh, S. J., Wang, Y. B., Lin, M. J., Wu, M. C., & Huang, L. L. (2022). Skin wound healing assessment via an optimized wound array model in miniature pigs. Scientific reports, 12(1), 1-15. https://doi.org/10.1038/s41598-021-03855-y
Landa, D. L., van Dishoeck, A. M., Steyerberg, E. W., & Hovius, S. E. (2016). Quality of measurements of acute surgical and traumatic wounds using a digital wound‐analysing tool. International Wound Journal, 13(5), 619-624. https://doi.org/10.1111/iwj.12330
Lineaweaver, W., Howard, R., Soucy, D., McMorris, S., Freeman, J., Crain, C., ... & Rumley, T. (1985). Topical antimicrobial toxicity. Archives of surgery, 120(3), 267-270. https://doi.org/10.1001/archsurg.1985.01390270007001
Lux, C. N. (2022). Wound healing in animals: a review of physiology and clinical evaluation. Veterinary Dermatology, 33(1), 91-e27. https://doi.org/10.1111/vde.13032
Nayak, B. S., Sandiford, S., & Maxwell, A. (2009). Evaluation of the wound-healing activity of ethanolic extract of Morinda citrifolia L. leaf. Evidence-based complementary and alternative medicine, 6(3), 351-356. https://doi.org/10.1093/ecam/nem127
Park, J. H., Choi, S. H., Park, S. J., Lee, Y. J., Park, J. H., Song, P. H., ... & Song, C. H. (2017). Promoting wound healing using low molecular weight fucoidan in a full-thickness dermal excision rat model. Marine Drugs, 15(4), 112-117. https://doi.org/10.3390/md15040112
Polo, A. B., Fabri, R. L., & Apolônio, A. C. M. (2020). Searching for mechanisms of action of antimicrobials. Archives of Microbiology, 202(9), 2347-2354. https://doi.org/10.1007/s00203-020-01959-z
Raziyeva, K., Kim, Y., Zharkinbekov, Z., Kassymbek, K., Jimi, S., & Saparov, A. (2021). Immunology of acute and chronic wound healing. Biomolecules, 11(5), 700. https://doi.org/10.3390/biom11050700
Rodeheaver, G., Bellamy, W., Kody, M., Spatafora, G., Fitton, L., Leyden, K., & Edlich, R. (1982). Bactericidal activity and toxicity of iodine-containing solutions in wounds. Archives of surgery, 117(2), 181-186. https://doi.org/10.1001/archsurg.1982.01380260051009
Somboonwong, J., Kankaisre, M., Tantisira, B., & Tantisira, M. H. (2012). Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: an experimental animal study. BMC complementary and alternative medicine, 12(1), 1-7. https://doi.org/10.1186/1472-6882-12-103
Takeo, M., Lee, W., & Ito, M. (2015). Wound healing and skin regeneration. Cold Spring Harbor perspectives in medicine, 5(1), a023267. https://doi.org/10.1101/cshperspect.a023267
Wang, L., Qin, W., Zhou, Y., Chen, B., Zhao, X., Zhao, H., ... & Ning, J. (2017). Transforming growth factor β plays an important role in enhancing wound healing by topical application of Povidone-iodine. Scientific Reports, 7(1), 1-8. https://doi.org/10.1038/s41598-017-01116-5
White, R. J., Cutting, K., & Kingsley, A. (2006). Topical antimicrobials in the control of wound bioburden. Ostomy/wound management, 52(8), 26-58.
Yalcınkaya, E., Basaran, M. M., Tunckasık, M. E., Yazici, G. N., Elmas, Ç., & Kocaturk, S. (2022). Efficiency of hypericum perforatum, povidone iodine, tincture benzoin and tretinoin on wound healing. Food and Chemical Toxicology, 166, 113209. https://doi.org/10.1016/j.fct.2022.113209
Yüksel, E. B., Yıldırım, A. M., Bal, A., & Kuloglu, T. (2014). The effect of different topical agents (silver sulfadiazine, povidone-iodine, and sodium chloride 0.9%) on burn injuries in rats. Plastic surgery international, 2014. https://doi.org/10.1155/2014/907082
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.