The problem of ensuring and controlling microaccelerations in the internal environment of a small technological spacecraft


  • A. V. Sedelnikov Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russia
  • E. V. Eskina Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russia
  • A. S. Taneeva Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russia
  • E. S. Khnyryova Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russia
  • M. E. Bratkova Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russia


gravity-sensitive process, internal environment, microacceleration, operating principles, small spacecraft


This paper gives reviews approaches to reduce microaccelerations in the internal environment of a small spacecraft and provides quantitative estimation of the level of microaccelerations. These approaches involve the reduction of microaccelerations in the entire internal environment of the spacecraft or the creation of a protected zone using vibration-isolating devices. In the latter case, gravity-sensitive processes can be performed only inside this zone. Various vibration-isolating devices based on various operating principles are considered. These anti-vibration devices have been experimentally tested under space flight conditions on various spacecraft. In this study, they are considered as ready-made solutions for the creation of a small technological spacecraft. A small technological spacecraft design was developed, and the issues of ensuring the quality of the obtained results of gravity-sensitive processes by controlling the level of microaccelerations were considered. The results can be used in the design and operation of small technological spacecraft.


Abrashkin, V. I., Bogoyavlensky, N. L., Voronov, K. E., Kazakova, A. E., Puzin, Y., Sazonov, V. V., ... & Chebukov, S. Y. (2007). Uncontrolled motion of the Foton M-2 satellite and quasistatic microaccelerations on its board. Cosmic research, 45(5), 424-444. DOI:10.1134/S0010952507050073

Abrashkin, V. I., Voronov, K. E., Piyakov, I. V., Puzin, Y., Sazonov, V. V., Semkin, N. D., & Chebukov, S. Y. (2015). Determining the rotational motion of the Bion M-1 satellite with the GRAVITON instrument. Cosmic Research, 53(4), 286-299. DOI:10.1134/S0010952515040012

Abrashkin, V. I., Voronov, K. E., Piyakov, A. V., Puzin, Y., Sazonov, V. V., Semkin, N. D., ... & Chebukov, S. Y. (2017). Uncontrolled rotational motion of the AIST small spacecraft prototype. Cosmic Research, 55(2), 128-141. DOI:10.1134/S0010952517020010

Abrashkin, V. I., Voronov, K. E., Dorofeev, A. S., Piyakov, A. V., Puzin, Y., Sazonov, V. V., ... & Chebukov, S. Y. (2019). Detection of the rotational motion of the AIST-2D small spacecraft by magnetic measurements. Cosmic Research, 57(1), 48-60.

Akulenko, L. D., Bolotnik, N. N., Borisov, A. E., Gavrikov, A. A., & Emel’yanov, G. A. (2019). Orientation control of an object on a rotating base by using a two-stage electric drive. Journal of Computer and Systems Sciences International, 58(6), 829–843. DOI:10.1134/S1064230719060029

Amselem, S. (2019). Remote controlled autonomous microgravity lab platforms for drug research in space. Pharmaceutical research, 36(12), 1-15. DOI:10.1007/s11095-019-2703-7

Anshakov, G. P., Belousov, A. I., Sedelnikov, A. V., & Gorozhankina, A. S. (2018). Efficiency Estimation of Electrothermal Thrusters Use in the Control System of the Technological Spacecraft Motion. Russian Aeronautics, 61(3), 347–354. DOI:10.3103/S1068799818030054

Bedingfield, K. L., Leach, R. D., & Alexander, M. B. (1996). Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment. NASA Reference Publication, 1390, 51. DOI:10.2514/6.1995-3564

Belousov, A. I., & Sedelnikov A. V. (2013). Probabilistic Estimation of Fulfilling Favorable Conditions to Realize the Gravity-Sensitive Processes Aboard a Space Laboratory. Russian Aeronautics, 56(3), 297–302. DOI:10.3103/S1068799813030124

Belousova, D. A., & Serdakova, V. V. (2020). Modeling the temperature shock of elastic elements using a one-dimensional model of thermal conductivity. International Journal of Modeling, Simulation, and Scientific Computing, 11(2), 2050060. DOI:10.1142/S1793962320500609

Blinov, V. N., Vavilov, I. S., Kositsin, V. V., Lukyanchik, A. I., Ruban, V. I., & Shalay, V. V. (2018). Study of power-to-weight ratio of the electrothermal propulsion system of nanosatellite maneuvering satellite platform. Journal of Physics: Conference Series, 944, 012020. DOI:10.25206/2310-9793-2017-5-2-04-16

Dong, W., Duan, W., Liu, W., & Zhang, Y. (2019). Microgravity disturbance analysis on Chinese space laboratory. npj Microgravity, 5(1), 1-6. DOI:10.1038/s41526-019-0078-z

Gordeev, B. A., Filatov, L. V., & Ainbinder, R. M. (2018). Mathematical models of vibration protection systems. Publishing house of the Nizhny Novgorod State University of Architecture and Civil Engineering, 168.

Hu, W. R., Zhao, J. F., Long, M., Zhang, X. W., Liu, Q. S., Hou, M. Y., ... & Wang, J. F. (2014). Space program SJ-10 of microgravity research. Microgravity Science and Technology, 26(3), 159-169. DOI:10.1007/s12217-014-9390-0

Huang, B., Li, D. G., Huang, Y., & Liu, C. T. (2018). Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Military Medical Research, 5(1), 18. DOI: 10.1186/s40779-018-0162-9

Krestina, A. S., & Tkachenko, I. S. (2022). Efficiency Assessment of the Deorbiting Systems for Small Satellite. Journal of Aeronautics, Astronautics, and Aviation, 54(2), 227–239.

Labib, M., Piontek, D., Valsecchi, N., Griffith, B., Dejmek, M., Jean, I., ... & de Carufel, J. (2010). The Fluid Science Laboratory's Microgravity Vibration Isolation Subsystem Overview and Commissioning Update. SpaceOps, 1–10. DOI:10.2514/6.2010-2007

Levtov, V. L., Romanov, V. V., Ivanov, A. I., Riaboukha, S. B., & Sazonov, V. V. (2001). Results of space-flight tests of the vibration-protective platform VZP-1K. Cosmic Research, 39(2), 137–149. DOI:10.1023/A:1017595027860

Li, X., Anken, R., Liu, L., Wang, G., & Liu, Y. (2017). Effects of simulated microgravity on otolith growth of larval zebrafish using a rotating-wall vessel: appropriate rotation speed and fish developmental stage. Microgravity Science and Technology, 29(1), 1-8. DOI:10.1007/S12217-016-9518-5

Li, Q., Liu, L., & Yang, H. (2020). High accuracy and multi-target acquisition, pointing and tracking under satellite micro-vibrations. Microgravity Science and Technology, 32(4), 715–727. DOI:10.1007/s12217-020-09804-0

Li, Y., Wang, C., Wang, L., Liu, H., & Jin, G. (2020). A Laser Interferometer Prototype with Pico-Meter Measurement Precision for Taiji Space Gravitational Wave Detection Missionin China. Microgravity Science and Technology, 32(3), 331–338. DOI:10.1007/s12217-019-09769-9

Li, J. C., Guo, B., Zhao, J. F., Li, K., & Hu, W. R. (2022). On the Space Thermal Destratification in a Partially Filled Hydrogen Propellant Tank by Jet Injection. Microgravity Science and Technology, 34(1), 6. DOI:10.1007/s12217-021-09923-2

Liu, W., Gao, Y., Dong, W., & Li, Z. (2018). Flight Test Results of the Microgravity Active Vibration Isolation System in China’s Tianzhou-1 Mission. Microgravity Science and Technology, 30(6), 995–1009. DOI:10.1007/S12217-018-9659-9

Lyubimova, T., Zubova, N., & Shevtsova, V. (2019). Effects of Non-Uniform Temperature of the Walls on the Soret Experiment. Microgravity Science and Technology, 31(1), 1–11. DOI:10.1007/s12217-018-9666-x

McPherson, A., & DeLucas, L. J. (2015). Microgravity protein crystallization. npj Microgravity, 1(1), 15010. DOI:10.1038/npjmgrav.2015.10

Myung, H. S., & Bang, H. (2003). Nonlinear Predictive Attitude Control of Spacecraft Under External Disturbances. Journal of Spacecraft and Rockets, 40(5), 696–699. DOI:10.2514/2.6896

Orlov, D. I. (2021). Modeling the temperature shock impact on the movement of a small technological spacecraft. In AIP Conference Proceedings (Vol. 2340, No. 1, p. 050001). AIP Publishing LLC. DOI:10.1063/5.0047296

Owen, R. G., Jones, D. I., Owens, A. R., & Robinson, A. (1990). Integration of a microgravity isolation mount within a Columbus single rack. Acta Astronautica, 22, 127–135. DOI:10.1016/0094-5765(90)90013-B

Perminov, A. V., Lyubimova, T. P., & Nikulina S. A. (2021). Influence of High Frequency Vertical Vibrations on Convective Regimes in a Closed Cavity at Normal and Low Gravity Conditions. Microgravity Science and Technology, 33(4), 1-18. DOI:10.1007/s12217-021-09898-0

Perminov, A. V., Nikulina, S. A., & Lyubimova, T. P. (2022). Analysis of Thermovibrational Convection Modes in Square Cavity Under Microgravity Conditions. Microgravity Science and Technology, 34(3), 1-10. DOI:10.1007/s12217-022-09956-1

Primm, L., Krupacs, E., & Jules, K. (2015). External payloads proposer’s guide to the International Space Station. Texas, US: NASA Johnson Space Center.

Ruff, G. A. (2001). Microgravity research in spacecraft fire safety. In Halon Options Technical Working Conference, 13–22.

Salmin, V. V., & Chetverikov, A. S. (2017). Methods of selecting guidance laws transfer vehicle with electric propulsion system during the flight into geostationary orbit. Advances in the Astronautical Sciences, 161, 455-466.

Sedelnikov, A. V., & Serpukhova, А. А. (2009). Simulation of a flexible spacecraft motion to evaluate microaccelerations. Russian Aeronautics, 52(4), 484 – 497. DOI:10.3103/S1068799809040187

Sedelnikov, A. V. (2015). Classification of microaccelerations according to methods of their control. Microgravity Science and Technology, 27(3), 245–251. DOI:10.1007/s12217-015-9442-0

Sedelnikov, A. V. (2016). Modeling of microaccelerations caused by running of attitude-control engines of spacecraft with elastic structural elements. Microgravity Science and Technology, 28(5), 491–498. DOI:10.1007/s12217-016-9507-8

Sedelnikov, A. V., & Potienko, K. I. (2017). Analysis of reduction of controllability of spacecraft during conducting of active control over microaccelerations. International Review of Aerospace Engineering, 10(3), 160–166. DOI:10.15866/irease.v10i3.12342

Sedelnikov, A. V. (2020). Accuracy assessment of microaccelerations simulation on the spacecraft “Foton-M” no. 2 according to magnetic measuring instruments data. Microgravity Science and Technology, 32(1), 259–264. DOI:10.1007/s12217-019-09766-y

Sedelnikov, A. V., & Orlov, D. I. (2020). Development of control algorithms for the orbital motion of a small technological spacecraft with a shadow portion of the orbit. Microgravity Science and Technology, 32(5), 941–951. DOI:10.1007/s12217-020-09822-y

Sedelnikov, A. V., Orlov, D. I. (2021). Analysis of the significance of the influence of various components of the disturbance from a temperature shock on the level of microaccelerations in the internal environment of a small spacecraft. Microgravity Science and Technology, 33(2), 22. DOI:10.1007/s12217-020-09867-z

Sedelnikov, A. V., Taneeva, A. S., Khnyryova, E. S., Kamaletdinova, M. V., & Martynova, E. D. (2021). Investigation of the rotational motion stability of the AIST small spacecraft prototype according to the measurements of the Earth's magnetic field. Journal of Physics: Conference Series, 1901, 012022. DOI:10.1088/1742-6596/1901/1/012022

Sedelnikov, A.V. (2022). Algorithm for restoring information of current from solar panels of a small spacecraft prototype "Aist" with help of normality conditions. Journal of Aeronautics, Astronautics, and Aviation, 54(1), 67 – 76. DOI:10.6125/JoAAA.202203_54(1).05

Sedelnikov, A.V., & Salmin, V. V. (2022). Modeling the disturbing effect on the aist small spacecraft based on the measurements data. Scientific Reports, 12(1), 1-15. DOI:10.1038/s41598-022-05367-9

Sharifulin, V. A., & Lyubimova, T. P. (2021). A hysteresis of supercritical water convection in an open elongated cavity at a fixed vertical heat flux. Microgravity Science and Technology, 33(3), 1-9. DOI:10.1007/s12217-021-09887-3

Snell, E. H., & Helliwell, J. R. (2005). Macromolecular crystallization in microgravity. Reports on progress in physics, 68(4), 799–853. DOI:10.1088/0034-4885/68/4/R02

Taneeva, A. S., Lukyanchik, V. V., & Khnyryova, E. S. (2021). Modeling the Dependence of the Specific Impulse on the Temperature of the Heater of an Electrothermal Micro-Motor Based on the Results of Its Tests. Journal of Physics: Conference Series, 2096, 012059. DOI:10.1088/1742-6596/2096/1/012059

Ulrich, S. (2016). Nonlinear passivity-based adaptive control of spacecraft formation flying. In 2016 American Control Conference (ACC) (pp. 7432-7437). IEEE. DOI:10.1109/ACC.2016.7526846

Whorton, M. S. (2000). Microgravity vibration isolation for the International Space Station. AIP Conference Proceedings, 504(1), 605-610.

Wu, Q., Liu, B., Cui, N., & Zhao, S. (2019). Tracking Control of a Maglev Vibration Isolation System Based on a High-Precision Relative Position and Attitude Model. Sensors, 19(15), 3375. DOI:10.3390/s19153375

Yang, H., Liu, L., Liu, Y., & Li, X. (2021). Modeling and Micro-vibration Control of Flexible Cable for Disturbance-Free Payload Spacecraft. Microgravity Science and Technology, 33(4), 46. DOI:10.1007/S12217-021-09897




How to Cite

Sedelnikov, A. V., Eskina, E. V., Taneeva, A. S., Khnyryova, E. S., & Bratkova, M. E. (2023). The problem of ensuring and controlling microaccelerations in the internal environment of a small technological spacecraft. Journal of Current Science and Technology, 13(1), 1–11. Retrieved from



Research Article