Vesicular drug delivery systems for the fungal infections’ treatment through topical application-a systemic review
DOI:
https://doi.org/10.59796/jcst.V13N2.2023.1856Keywords:
bilosomes, cubosomes, ethosomes, liposomes, niosomes, sphingosomes, ufasomesAbstract
In this systemic review, we tried to explore and summarize the Vesicular Drug Delivery Systems (VDDSs) which can exclusively used for topical applications in the treatment of fungal infections. The specific algorithm is developed for this systemic review, exclusion criteria for the review were set and results were excluded which were meets the exclusion criteria. To build a review, Google Scholar® and PubMed® are two databases that are targeted so that we can collect the number of freely available full-text articles and can minimize the risk of bias (unavailability of full-text articles, for this study). By adopting the algorithm, searched articles were studied thoroughly and we found that thirteen types of VDDS were used by the researchers to treat skin infections caused by fungi in the last five years. From this current systemic review, we found a numbers of VDDSs are available for skin fungal infection, but all are not suitable for topical applications because of some drawbacks associated with some VDDS such as instability (Emulsomes), high cost of manufacturing (Sphingosomes), low transfer efficiency (Aquasomes), etc. As per the data analysed, we can say that; Liposomes, Ethosomes, Niosomes, Bilosomes, Cubosomes, and Ufasomes are the choices of researchers as VDDS in the therapy of different fungal diseases. Upcoming researchers can focus on these VDDSs in the treatment of infections spread on the skin by the fungi.
References
Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., ... & Nejati-Koshki, K. (2013). Liposome: classification, preparation, and applications. Nanoscale research letters, 8(1), 1-9. https://doi.org/10.1186/1556-276X-8-102
Ambati, S., Ellis, E. C., Lin, J., Lin, X., Lewis, Z. A., & Meagher, R. B. (2019a). Dectin-2- targeted antifungal liposomes exhibit enhanced efficacy. Msphere, 4(5), e00715-19. https://doi.org/10.1128/mSphere.00715- 19
Ambati, S., Ellis, E. C., Pham, T., Lewis, Z. A., Lin, X., & Meagher, R. B. (2021). Antifungal liposomes directed by dectin-2 offer a promising therapeutic option for pulmonary aspergillosis. Mbio, 12(1), e00030-21. https://doi.org/10.1128/mBio.00030-21
Ambati, S., Ferarro, A. R., Khang, S. E., Lin, X., Momany, M., Lewis, Z., & Meagher, R. B. (2019b). Targeted antifungal liposomes. bioRxiv, 518043. https://doi.org/10.1101/518043
Arundhasree, R., Aiswarya, R., Kumar, A. R., Kumar, S., & Nair, S. (2021). Ufasomes: Unsaturated fatty acid based vesicular drug delivery system. International Journal of Applied Pharmaceutics, 13(2), 76-83. https://dx.doi.org/10.22159/ijap.2021v13i 2.39526
Bahramizadeh, M., Bahramizadeh, M., Kiafar, B., Jafarian, A. H., Nikpoor, A. R., Hatamipour, M., ... & Jafari, M. R. (2019). Development, characterization and evaluation of topical methotrexate- entrapped deformable liposome on imiquimod-induced psoriasis in a mouse model. International journal of pharmaceutics, 569, 118623. https://doi.org/10.1016/j.ijpharm.2019.11 8623
Bezerra, C. F., de Alencar Júnior, J. G., de Lima Honorato, R., Dos Santos, A. T. L., da Silva, J. C. P., da Silva, T. G., ... & da Silva, T. G. (2020). Antifungal activity of farnesol incorporated in liposomes and associated with fluconazole. Chemistry and Physics of Lipids, 233, 104987. https://doi.org/10.1016/j.chemphyslip.202 0.104987
Bhattacharya, S. (2021). Preparation and characterizations of glyceryl oleate ufasomes of terbinafine hydrochloride: a novel approach to trigger Candida albicans fungal infection. Future Journal of Pharmaceutical Sciences, 7(1), 1-11. https://doi.org/10.1186/s43094-020- 00143-w
Bolla, P. K., Meraz, C. A., Rodriguez, V. A., Deaguero, I., Singh, M., Yellepeddi, V. K., & Renukuntla, J. (2019). Clotrimazole loaded ufosomes for topical delivery: formulation development and in-vitro studies. Molecules, 24(17), 3139. https://doi.org/10.3390/molecules241731 39
Bongomin, F., Gago, S., Oladele, R. O., & Denning, D. W. (2017). Global and multi- national prevalence of fungal diseases— estimate precision. Journal of fungi, 3(4), 57. https://doi.org/10.3390/jof3040057
Choudhury, Q. J., Ambati, S., Lewis, Z. A., Meagher, R.B. (2022). Targeted Delivery of Antifungal Liposomes to Rhizopus delemar. Journal of Fungi, 8, 352. https://doi.org/10.3390/jof8040352
Dar, M. J., Khalid, S., Varikuti, S., Satoskar, A. R., & Khan, G. M. (2020). Nano-elastic liposomes as multidrug carrier of sodium stibogluconate and ketoconazole: a potential new approach for the topical treatment of cutaneous Leishmaniasis. European journal of pharmaceutical sciences, 145, 105256. https://doi.org/10.1016/j.ejps.2020.10525 6
Dave, V., Sharma, S., Yadav, R. B., & Agarwal, U. (2017). Herbal liposome for the topical delivery of ketoconazole for the effective treatment of seborrheic dermatitis. Applied Nanoscience, 7(8), 973-987. https://doi.org/10.1007/s13204-017-0634- 3
Fonseca Bezerra, C., de Alencar Júnior, J. G., de Lima Honorato, R., Dos Santos, A. T. L., Pereira da Silva, J. C., Silva, T. G. D., ... & da Silva, T. G. (2020). Antifungal Properties of Nerolidol-Containing Liposomes in Association with Fluconazole. Membranes, 10(9), 194. https://doi.org/10.3390/membranes10090 194
Garg, A., Sharma, G. S., Goyal, A. K., Ghosh, G., Si, S. C., & Rath, G. (2020). Recent advances in topical carriers of anti-fungal agents. Heliyon, 6(8), e04663. https://doi.org/10.1016/j.heliyon.2020.e0 4663
Hassanpour, P., Hamishehkar, H., Bahari Baroughi, B., Baradaran, B., Sandoghchian Shotorbani, S., Mohammadi, M., ... & Nami, S. (2021). Antifungal Effects of Voriconazole- Loaded Nano-Liposome on Fluconazole- Resistant Clinical Isolates of Candida albicans, Biological Activity and ERG11, CDR1, and CDR2 Gene Expression. ASSAY and Drug Development Technologies, 19(7), 453-462. https://doi.org/10.1089/adt.2020.1057
Hassanpour, P., Hamishehkar, H., Baradaran, B., Mohammadi, M., Shomali, N., Spotin, A., & Nami, S. (2020). An appraisal of antifungal impacts of nano-liposome containing voriconazole on voriconazole- resistant Aspergillus flavus isolates as a groundbreaking drug delivery system. Nanomedicine Research Journal, 5(1), 90-100. https://doi.org/10.22034/nmrj.2020.01.01 0
Hemanth, A. R., Kumar, G. B., Goudanavar, P., & Sagar, S. D. (2021). Formulation and Evaluation of Hydrogels containing Liposomes Entrapped with Antifungal Agent. Research Journal of Pharmacy and Technology, 14(9), 4947-4950. https://doi.org/10.52711/0974- 360X.2021.00860
Jadhav, S. M., Morey, P., Karpe, M. M., & Kadam, V. (2012). Novel vesicular system: an overview. Journal of Applied Pharmaceutical Science, 02(01), 193-202.
Jain, H., Geetanjali, D., Dalvi, H., Bhat, A., Godugu, C., & Srivastava, S. (2022). Liposome mediated topical delivery of Ibrutinib and Curcumin as a synergistic approach to combat imiquimod induced psoriasis. Journal of Drug Delivery Science and Technology, 68, 103103. https://doi.org/10.1016/j.jddst.2022.1031 03
Jindal, S., Awasthi, R., Singhare, D., & Kulkarni, G. T. (2020). Topical delivery of Tacrolimus using liposome containing gel: An emerging and synergistic approach in management of psoriasis. Medical Hypotheses, 142, 109838. https://doi.org/10.1016/j.mehy.2020.1098 38
Kumar, N., & Goindi, S. (2021). Development, characterization and preclinical evaluation of nanosized liposomes of itraconazole for topical application: 32 full factorial design to estimate the relationship between formulation components. Journal of Drug Delivery Science and Technology, 66, 102785. https://doi.org/10.1016/j.jddst.2021.1027 85
Leading International Fungal Education (LIFE is an initiative of the Fungal Infection Trust). Retrieved June 22. 2022, Fungal Infections. Retrieved from https://fungalinfectiontrust.org/links-to-life-fungal-infections/
Mulla, T. S., Thorat, M. S., Rayate, Y., & Nitalikar, M. (2019). Liposome as a drug carrier. Asian Journal of Research in Pharmaceutical Science, 9(2), 141-147. http://dx.doi.org/10.5958/2231- 5659.2019.00021.3
Mutlu-Agardan, N. B., Yilmaz, S., Kaynak Onurdag, F., & Celebi, N. (2021). Development of effective AmB/AmB– αCD complex double loaded liposomes using a factorial design for systemic fungal infection treatment. Journal of liposome research, 31(2), 177-188. https://doi.org/10.1080/08982104.2020.1 755980
Myneni, G. S., Radha, G. V., & Soujanya, G. V. R. L. (2021). Novel Vesicular Drug Delivery Systems: A Review. Journal of Pharmaceutical Research, 11(04), 1650-1664. http://dx.doi.org/10.5281/zenodo.477254 4
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. Journal of clinical epidemiology, 134, 103-112. https://doi.org/10.1016/j.jclinepi.2021.02. 003
Patel, A. T., Modiya, P. R., Shinde, G. A., & Patel, R. A. (2018). Formulation and Characterization of Long Circulating Liposomes of Anti-fungal Drug. International Journal of Pharmacy Research & Technology, 8(2), 32-42.
Reddy, G. K., Padmavathi, A. R., & Nancharaiah, Y. V. (2022). Fungal infections: Pathogenesis, antifungals and alternate treatment approaches. Current Research in Microbial Sciences, 3, 100137. https://doi.org/10.1016/j.crmicr.2022.100 137
Risaliti, L., Pini, G., Donato, R., Sacco, C., Roberta, A., Vanti, G., ... & Bilia, A. R. (2019). Development of Artemisia annua essential oil liposomes with antifungal activity against Candida species. Planta Medica, 85(18), SL-L. http://dx.doi.org/10.1055/s-0039-3399727
Tansathien, K., Dechsri, K., Opanasopit, P., Nuntharatanapong, N., Sukma, M., & Rangsimawong, W. (2022). Investigation of lipid nanocarriers and microspicule gel for dermal delivery of porcine placenta extract. Journal of Current Science and Technology, 12(3), 505-516. DOI:10.14456/jcst.2022.39
Verma, S., & Utreja, P. (2019). Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian journal of pharmaceutical sciences, 14(2), 117-129. https://doi.org/10.1016/j.ajps.2018.05.007
Walker, L., Sood, P., Lenardon, M. D., Milne, G., Olson, J., Jensen, G., ... & Gow, N. A. (2018). The viscoelastic properties of the fungal cell wall allow traffic of AmBisome as intact liposome vesicles. MBio, 9(1), e02383-17. https://doi.org/10.1128/mBio.02383-17
Witika, B. A., Mweetwa, L. L., Tshiamo, K. O., Edler, K., Matafwali, S. K., Ntemi, P. V., ... & Makoni, P. A. (2021). Vesicular drug delivery for the treatment of topical disorders: current and future perspectives. Journal of Pharmacy and Pharmacology, 73(11), 1427-1441. https://doi.org/10.1093/jpp/rgab082
Zhang, Z. H., Teng, F., Sun, Q. X., Wang, S. Z., Liu, C., & Zhao, G. Q. (2019). Rapamycin liposome gutta inhibiting fungal keratitis of rats. International Journal of Ophthalmology, 12(4), 536. http://dx.doi.org/10.18240/ijo.2019.04.02
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.