Supramolecular structure of five-coordinate [(4-methyl-2,6-dinitrophenolato)(octaethylporphinato)iron(III)] heme complex


  • Saifon A. Kohnhorst Chemistry Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand



dinitrophenol, heme, hydrogen bond, Iron porphyrin, malaria, phenolate, supramolecular


The crystallographic and spectroscopic characterization of the phenolate complex of [(4-methyl-2,6-dinitrophenolato)(2,3,7,8,12,13,17,18-octaethylporphinato)Fe(III)], [FeIII(OEP)(DNOC)] is reported. The 4-methyl-2,6-dinitrophenol (DNOC) ligand was coordinating with the FeIII(OEP) moiety through the phenylato-O-atom. The complex crystallizes in the triclinic P-1 with Z=2. The crystallographic information showed the average Fe—Np distance of 2.053(18) Å, with the Fe displacement from the 24 atoms porphyrin plane of 0.41(6) Å, and the Fe—O distance of 1.881(15) Å showing a five-coordinate square-pyramidal geometry. The characteristic of the formation of the Fe—O bond was found near 537 cm-1 for IR spectra and the n4 band was near 534 cm-1 for Raman spectra. The major supramolecular interactions involved an intermolecular hydrogen bond C—H···O with a minimum distance of 2.732(5) Å, and the shortest plane-plane contact distance of 3.689(3) Å. The FT-IR characteristic showed the new band near 3400 cm-1, which was broadened due to the formation of hydrogen bonds. The role of these weak C—H···O hydrogen bonds concerted to stabilized the crystal packing in the heme complex. Thus, the number of excellent hydrogen bond acceptors of the axial ligand contributes to its supramolecular structure.


Bernstein, J., Davis, R. E., Shimoni, L., & Chang, N.-L. (1995). Patterns in hydrogen bonding: Functionality and graph set analysis in Crystals. Angewandte Chemie International Edition in English, 34(15), 1555–1573.

Bhowmik, S., Dey, S., Sahoo, D., & Rath, S. P. (2013). Unusual stabilization of an intermediate spin state of iron upon the axial phenoxide coordination of a diiron(III)-bisporphyrin: Effect of heme-heme interactions. Chemistry - A European Journal, 19(41), 13732–13744.

Bondi, A. (1966). Van der Waals volumes and radii of metals in covalent compounds. The Journal of Physical Chemistry, 70(9), 3006–3007.

Brémard, C., Kowalewski, P., Merlin, J. C., & Moreau, S. (1992). Resonance Raman enhancement of the oxo-bridged dinuclear iron center: Vibrational modes in iron(iii) physiological-type porphyrin complexes. Journal of Raman Spectroscopy, 23(6), 325–333.

Bruker. (2016). APEX4, SAINT and SADABS; Bruker AXS Inc.: Madison, WI, USA.

Bruker. (2021). SAINT V8.40B. Bruker AXS Inc. Madison, WI, USA.

Chaudhary, A., Patra, R., & Rath, S. P. (2010). Binding of catechols to iron(iii)–octaethylporphyrin: An experimental and DFT investigation. European Journal of Inorganic Chemistry, 2010(33), 5211–5221.

Corwin, A. H. (1965). Porphyrins and metalloporphyrins; their general, physical and Coordination Chemistry, and laboratory methods. Journal of the Amarican Society, 87(5), 1154–1155. ttps://

Das, R. R. (1975). Absorption and emission spectral studies on the dimerization of free porphyrin and its zinc(ii), copper(ii) and nickel(ii) derivatives in aqueous solution. Journal of Inorganic and Nuclear Chemistry, 37(1), 153–157.

Dhifaoui, S., Hajji, M., Nasri, S., Guerfel, T., Daran, J. C., & Nasri, H. (2018b). A new high-spin iron(iii) bis(aqua) complex with the Meso-tetra(para-chlorophenyl)porphyrin: X-ray crystallography, Hirshfeld surface analysis, magnetic, EPR and electrochemical properties. Research on Chemical Intermediates, 44(12), 7259–7276.

Dhifaoui, S., Mchiri, C., Quatremare, P., Marvaud, V., Bujacz, A., & Nasri, H. (2018a). Molecular structure, magnetic properties, cyclic voltammetry of the low-spin iron(iii) bis(4-ethylaniline) complex with the para -chloro substituted Meso -tetraphenylporphyrin. Journal of Molecular Structure, 1153, 353–359.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341.

Edwards, S. L., Xuong, N. H., Hamlin, R. C., & Kraut, J. (1987). Crystal structure of cytochrome c peroxidase compound I. Biochemistry, 26(6), 1503-1511.

Etter, M. C., MacDonald, J. C., & Bernstein, J. (1990). Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallographica Section B: Structural Science, 46(2), 256-262.

Facchin, A., Zerbetto, M., Gennaro, A., Vittadini, A., Forrer, D., & Durante, C. (2021). Oxygen Reduction Reaction at Single‐Site Catalysts: A Combined Electrochemical Scanning Tunnelling Microscopy and DFT Investigation on Iron Octaethylporphyrin Chloride on HOPG. ChemElectroChem, 8(15), 2825-2835.

Farrugia, L. J. (1997). ORTEP-3 for windows - a version of ORTEP-iii with a graphical user interface (GUI). Journal of Applied Crystallography, 30(5), 565–565.

Hersleth, H.-P., Ryde, U., Rydberg, P., Görbitz, C. H., & Andersson, K. K. (2006). Structures of the high-valent metal-ion haem–oxygen intermediates in peroxidases, oxygenases and catalases. Journal of Inorganic Biochemistry, 100(4), 460–476.

Hu, C., Noll, B. C., Schulz, C. E., & Scheidt, W. R. (2018). Hydrogen-bonding effects in five-coordinate high-spin imidazole-ligated iron(ii) porphyrinates. Inorganic Chemistry, 57(2), 793–803.

Hu, S., Smith, K. M., & Spiro, T. G. (1996). Assignment of Protoheme Resonance Raman Spectrum by heme labeling in myoglobin. Journal of the American Chemical Society, 118(50), 12638–12646.

Hübschle, C. B. (2011). ShelXle: A Qt graphical user interface for SHEXL. Acta Crystallographica Section A Foundations and Advances, 44, 1281-1284.

Kanamori, D., Yamada, Y., Onoda, A., Okamura, T.-aki, Adachi, S., Yamamoto, H., & Ueyama, N. (2005). Structures and properties of octaethylporphinato(phenolate)iron(iii) complexes with NH⋯O hydrogen bonds: Modulation of Fe–O bond character by the hydrogen bond. Inorganica Chimica Acta, 358(2), 331–338.

Kingsbury, C. J., & Senge, M. O. (2021). The shape of Porphyrins. Coordination Chemistry Reviews, 431, 213760.

Kirkman, H. N., & Gaetani, G. F. (2007). Mammalian catalase: A venerable enzyme with New Mysteries. Trends in Biochemical Sciences, 32(1), 44–50.

Kohnhorst, S. A., & Haller, K. J. (2014). Chlorido(2,3,7,8,12,13,17,18-octaethylporphyrinato)iron(iii): A new triclinic polymorph of Fe(OEP)Cl. Acta Crystallographica Section C Structural Chemistry, 70(4), 368–374.

Lee, H., Lee, D., Kim, I., Lee, E., & Jang, W.-D. (2020). Formation of supramolecular polymers from porphyrin tripods. Macromolecules, 53(18), 8060–8067.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T., McCabe, P., Pidcock, E., ... & Wood, P. A. (2020). Mercury 4.0: From visualization to analysis, design and prediction. Journal of applied crystallography, 53(1), 226-235.

Martin, D. J., Johnson, S. I., Mercado, B. Q., Raugei, S., & Mayer, J. M. (2020). Intramolecular electrostatic effects on O2, CO2, and acetate binding to a cationic iron porphyrin. Inorganic Chemistry, 59(23), 17402–17414.

Mchiri, C., Dhifaoui, S., Ezzayani, K., Guergueb, M., Roisnel, T., Loiseau, F., & Nasri, H. (2019). Insights into the new cadmium(ii) metalloporphyrin: Synthesis, X-ray crystal structure, Hirshfeld surface analysis, photophysical and cyclic voltammetry characterization of the (morpholine){(meso-tetra(para-chloro-phenyl)porphyrinato}cadmium(ii). Polyhedron, 171, 10–19.

Norvaiša, K., Flanagan, K. J., Gibbons, D., & Senge, M. O. (2019). Conformational RE‐engineering of porphyrins as receptors with switchable N−H⋅⋅⋅X‐type binding modes. Angewandte Chemie International Edition, 58(46), 16553–16557.

Norvaiša, K., Kielmann, M., & Senge, M. O. (2020). Porphyrins as colorimetric and photometric biosensors in modern bioanalytical systems. ChemBioChem, 21(13), 1793–1807.

Norvaiša, K., Maguire, S., Donohoe, C., O'Brien, J. E., Twamley, B., Gomes‐da‐Silva, L. C., & Senge, M. O. (2021). Steric repulsion induced conformational switch in supramolecular structures. Chemistry – A European Journal, 28(4), e202103879.

Panyanon, C., Dungkaew, W., & Chainok, K. (2021, January). Synthesis and structural characterization of (Na6F(H2O)18[(VO4)2] •2H3O•2HF. Journal of Current Science and Technology, 11(1), 32-39.

Park, J. M., Hong, K.-I., Lee, H., & Jang, W.-D. (2021). Bioinspired applications of porphyrin derivatives. Accounts of Chemical Research, 54(9), 2249–2260.

Puntharod, R. (2008). Synthesis and structural studies of malaria pigment model systems. [Doctroal dissertation, Suranaree University of Technology].

Puntharod, R., Haller, K. J., Robertson, E. G., Gwee, E. S., Izgorodina, E. I., & Wood, B. R. (2017). An improved model for malaria pigment and β‐hematin: Fe(OEP)Picrate. Journal of Raman Spectroscopy, 48(9), 1148–1157.

Puntharod, R., Webster, G. T., Asghari-Khiavi, M., Bambery, K. R., Safinejad, F., Rivadehi, S., ... & Wood, B. R. (2010). Supramolecular interactions playing an integral role in the near-infrared Raman “excitonic” enhancement observed in β-hematin (malaria pigment) and other related heme derivatives. The Journal of Physical Chemistry B, 114(37), 12104-12115.

Rani, J., Raveendran, A., Sushila, Chaudhary, A., Panda, M. K., & Patra, R. (2018). Polymorphism in Sn (IV)-tetrapyridyl porphyrins with a halogenated axial ligand: Structural, photophysical, and morphological study. Crystal Growth & Design, 18(3), 1437-1447.

Sahoo, D., Quesne, M. G., de Visser, S. P., & Rath, S. P. (2015). Hydrogen-bonding interactions trigger a spin-flip in iron(III) porphyrin complexes. Angewandte Chemie International Edition, 54, 4796–4800.

Scheidt, W. R., & Lee, Y. J. (1987). Recent advances in the stereochemistry of metallotetrapyrroles. Structure and Bonding, 1–70.

Scheidt, W. R., Geiger, D. K., Lee, Y. J., Reed, C. A., & Lang, G. (1985). Characterization of five-coordinate mono (imidazole)(porphinato) iron (II) complexes. Journal of the American Chemical Society, 107(20), 5693-5699.

Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3–8.

Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., & Spackman, M. A. (2021). CrystalExplorer: A program for Hirshfeld Surface Analysis, visualization and quantitative analysis of molecular crystals. Journal of Applied Crystallography, 54(3), 1006–1011.

Steiner, T. (2003). C–H···O hydrogen bonding in Crystals. Crystallography Reviews, 9(2-3), 177–228.

Sujatha, S., & Arunkumar, C. (2016). Fluorinated porphyrinic crystalline solids: Structural elucidation and study of intermolecular interactions. Crystalline and Non-Crystalline Solids, 57.

Sumner, J. B. (1926). The isolation and crystallization of the enzyme urease. Journal of Biological Chemistry, 69(2), 435–441.

Sumner, J. B., & Dounce, A. L. (1937). Crystalline catalase. Science, 85(2206), 366–367.

Uno, T., Hatano, K., Nishimura, Y., & Arata, Y. (1990). Spectrophotometric and resonance Raman studies on the formation of phenolate and thiolate complexes of (octaethylporphinato)iron(iii). Inorganic Chemistry, 29(15), 2803–2807.

Wang, Z., Johnson, S. I., Wu, G., & Ménard, G. (2021). Multiple N–H and C–H Hydrogen Atom Abstractions Through Coordination-Induced Bond Weakening at Fe-Amine Complexes. Inorganic Chemistry, 60(11), 8242-8251.

Watanabe, Y., Nakajima, H., & Ueno, T. (2007). Reactivities of oxo and peroxo intermediates studied by hemoprotein mutants. ChemInform, 38(41).

Westrip, S. P. (2010). publcif: Software for editing, validating and formatting crystallographic information files. Journal of Applied Crystallography, 43(4), 920–925.

Wood, B. R., Langford, S. J., Cooke, B. M., Glenister, F. K., Lim, J., & McNaughton, D. (2003). Raman imaging of Hemozoin within the food vacuole of plasmodium falciparum trophozoites. FEBS Letters, 554(3), 247–252.

Wood, B. R., Langford, S. J., Cooke, B. M., Lim, J., Glenister, F. K., Duriska, M., Unthank, J. K., & McNaughton, D. (2004). Resonance Raman spectroscopy reveals new insight into the electronic structure of β-hematin and malaria pigment. Journal of the American Chemical Society, 126(30), 9233–9239.




How to Cite

Saifon A. Kohnhorst. (2023). Supramolecular structure of five-coordinate [(4-methyl-2,6-dinitrophenolato)(octaethylporphinato)iron(III)] heme complex . Journal of Current Science and Technology, 13(2), 364–391.



Research Article