Experimental validation of multiaxial fatigue theories to estimate fatigue life of helical compression spring
DOI:
https://doi.org/10.59796/jcst.V13N2.2023.1749Keywords:
baumel & seeger, fatemi & socie, fatigue life, fatigue criteria, helical compression spring, wang & brownAbstract
High-stress amplitudes and mean stress cycles are expected to be endured by helical compression springs utilized in a two-suspension wheeler's system. Fatigue failure of all these springs brings enormous eventual repair and replacement costs. A fatigue test is conducted to ascertain fatigue strength. The spring test plan is rather extensive due to the limited time and numerous test spring versions. Efforts were made to anticipate the helical spring's fatigue life. Multiaxial fatigue theories are examined in this work. The research paper aims to scrutinize the appropriate techniques that spring manufacturers should employ in the planning stage to calculate the fatigue life of helical compression springs. The criteria of Wang & Brown, Fatemi & Socie, Mitchell, Baumel & Seeger, and Smith & Watson are used in the present investigation. The results of the experiment and the predicted life are compared. Spring fatigue life is overvalued by the Wang-Brown criterion, while the Fatemi-Socie model offers a precise forecast of fatigue life.
References
Abdullah, L., Karam Singh, S. S., Azman, A. H., Abdullah, S., Mohd Ihsan, A. K. A., & Kong, Y. S. (2019). Fatigue life-based reliability assessment of a heavy vehicle leaf spring. International Journal of Structural Integrity, 10(5), 726-736. https://doi.org/10.1108/IJSI-04-2019-0034
Al Musalli, T., Ali, T. K., & Esakki, B. (2020). Fatigue Analysis of Helical Spring Subjected to Multi-axial Load. In Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering. Singapore: Springer. https://doi.org/0.1007/978-981-15-6619-6_41
Bäumel, A. J., & Seeger, T. (1990). Materials data for cyclic loading. In Materials science monographs. Amsterdam: Elsevier.
Carlson, H. (1978). Spring designer’s handbook. New York, US: Marcel Dekker Inc.
Del Llano-Vizcaya, L., Rubio-González, C., Mesmacque, G., & Cervantes-Hernández, T. (2006). Multiaxial fatigue and failure analysis of helical compression springs. Engineering failure analysis, 13(8), 1303-1313. https://doi.org/10.1016/j.engfailanal.2005.10.011
Deng, Q. Y., Zhu, S. P., He, J. C., Li, X. K., & Carpinteri, A. (2022). Multiaxial fatigue under variable amplitude loadings: review and solutions International Journal of Structural Integrity, 13(3), 349–393. https://doi.org/10.1108/ijsi-03-2022-0025
Fatemi, A., & Shamsaei, N. (2011). Multiaxial fatigue: An overview and some approximation models for life estimation. International Journal of Fatigue, 33(8), 948–958. https://doi.org/10.1016/j.ijfatigue.2011.01.00
Fatemi, A., & Socie, D. F. (1988). A critical plane approach to multiaxial fatigue damage including out‐of‐phase loading. Fatigue & Fracture of Engineering Materials & Structures, 11(3), 149-165. https://doi.org/10.1111/j.1460-2695.1988.tb01169.x
Gates, N. R., & Fatemi, A. (2018). Multiaxial variable amplitude fatigue life analysis using the critical plane approach, Part II: Notched specimen experiments and life estimations. International Journal of Fatigue, 106, 56–69. https://doi.org/10.1016/j.ijfatigue.2017.09.009
Geilen, M. B., Klein, M., & Oechsner, M. (2020). On the Influence of Ultimate Number of Cycles on Lifetime Prediction for Compression Springs Manufactured from VDSiCr Class Spring Wire. Materials, 13(14), Article 3222. https://doi.org/10.3390/ma13143222
Hamzi, N. M., Singh, S., Abdullah, S., & Rasani, M. R. (2022). Fatigue life assessment of vehicle coil spring using finite element analysis under random strain loads in time domain. International Journal of Structural Integrity, 13(4), 685–698. https://doi.org/10.1108/ijsi-02-2022-0021
Juvinall, R. C., & Marshek, K. M. (2020). Fundamentals of machine component design. New Jersey, US: John Wiley & Sons.
Kamal, M., & Rahman, M. M. (2018). Advances in fatigue life modeling: A review. Renewable and Sustainable Energy Reviews, 82, 940-949. https://doi.org/10.1016/j.rser.2017.09.047
Karolczuk, A., & Papuga, J. (2019). Recent progress in the application of multiaxial fatigue criteria to lifetime calculations. Procedia Structural Integrity, 23, 69–76. https://doi.org/10.1016/j.prostr.2020.01.065
Kumar, A., Anikivi, A., & Deshpande, S. (2019). FEA analysis and optimization of two wheeler bike mono suspension system. International Journal of Mechanical and Production Engineering Research and Development, 9(2), 111-122. https://doi.org/10.24247/ijmperdapr201911
Liao, D., Zhu, S. P., & Qian, G. (2019). Multiaxial fatigue analysis of notched components using combined critical plane and critical distance approach. International Journal of Mechanical Sciences, 160, 38–50. https://doi.org/10.1016/j.ijmecsci.2019.06.027
Mitchell, M. R. (1992). Advances in fatigue lifetime predictive techniques (Vol. 1122). Pennsylvania, US: ASTM International.
Mozafari, F., Thamburaja, P., Moslemi, N., & Srinivasa, A. (2021). Finite-element simulation of multi-axial fatigue loading in metals based on a novel experimentally-validated microplastic hysteresis-tracking method. Finite Elements in Analysis and Design, 187, Article 103481. https://doi.org/10.1016/j.finel.2020.103481
Mulla, T. M. (2016). Fatigue life estimation of helical coil compression spring used in front suspension of a three wheeler vehicle. In Proceedings of the modern era research in mechanical engineering-2016 (MERME-16), Urun Islampur, India.
Muralidharan, U., & Manson, S. S. (1988). A Modified Universal Slopes Equation for Estimation of Fatigue Characteristics of Metals. Journal of Engineering Materials and Technology, 110(1), 55–58. https://doi.org/10.1115/1.3226010
Nya, R. M., Abdullah, S., & Singh, S. S. K. (2019). Reliability-based fatigue life of vehicle spring under random loading. International Journal of Structural Integrity, 10(5), 737-748. https://doi.org/10.1108/ijsi-03-2019-0025
Pastorcic, D., Vukelic, G., & Bozic, Z. (2019). Coil spring failure and fatigue analysis. Engineering Failure Analysis, 99, 310-318. https://doi.org/10.1016/j.engfailanal.2019.02.017
Sajith, S., Murthy, K. S. R. K., & Robi, P. S. (2020). Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061-T6. International Journal of Fatigue, 130, Article 105285. https://doi.org/10.1016/j.ijfatigue.2019.105285
Shigley, J. E., & Mitchell, L. D. (1993). Mechanical Engineering Design. New York, US: McGraw-Hill Education.
Smith, K. N., Watson, P., & Topper, T. H. (1970). A Stress-Strain Function for the Fatigue of Metals. Journal of materials, 5(4), 767-778.
Vijayanandh, R., Venkatesan, K., Kumar, M. S., Kumar, G. R., Jagadeeshwaran, P., & Kumar, R. R. (2020, February). Comparative fatigue life estimations of Marine Propeller by using FSI. Journal of Physics: Conference Series, 1473(1), Article 012018. https://doi.org/10.1088/1742-6596/1473/1/012018
Wang, C. H., & Brown, M. W. (1993). A path‐independent parameter for fatigue under proportional and non‐proportional loading. Fatigue & fracture of engineering materials & structures, 16(12), 1285-1297. https://doi.org/10.1111/j.1460-2695.1993.tb00739.x
Zhu, S. P., Yu, Z. Y., Correia, J., De Jesus, A., & Berto, F. (2018). Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials. International Journal of Fatigue, 112, 279-288. https://doi.org/10.1016/j.ijfatigue.2018.03.028
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.