A systematic survey on deep learning techniques for chest disease detection using chest radiographs


  • Akanksha Soni Department of ECE, UIT-RGPV, Bhopal, 462033, India
  • Avinash Rai Department of ECE, UIT-RGPV, Bhopal, 462033, India




chest x-rays (CXRs), chest diseases, CXR datasets, deep learning (DL), medical image processing, survey


The lung is one of the most sensitive internal organs of the human body that gets infected by constant exposure to chemicals, particles, and infectious organisms in the atmospheric air. Due to this, the most dangerous chest diseases take place which are the leading cause of human disability and death throughout the world. These pulmonary diseases can be recognized by medical imaging techniques i.e. Chest radiography, Computed tomography, Pulmonary and bronchial angiography, Magnetic resonance imaging, Ultrasonography, and Nuclear medicine techniques. A massive amount of chest reports are generated every day that contain a large amount of anatomical and potentially pathological information, but manual detection and classification of chest abnormalities are considered a tedious and time-taking task. In addition, it also requires skilled radiologists as these reports are often difficult to read and differentiate the pathologies of the chest. To eradicate this issue and give a value-added solution; artificial intelligence and deep learning-based algorithms show excellent performance and have proven their effectiveness for object recognition and image segmentation. The primary aim of this study is to present a comprehensive analysis of the deep learning approaches used to identify various types of pulmonary pathologies on CXRs. In addition, we provide a detailed analysis of the most popular open-access CXR datasets, taxonomy of the state-of-the-art works to assist the researchers in preparing the plan for their research contribution, and discuss potential future research directions in this field. More than 350 research papers from various indexing services, including Web of Science, Scopus, PubMed, and IEEE, were considered for this review article. After several selection parameters, it is observed that most of the literature focuses on the DL approach with CXRs. However, few publications have focused on CT scans and Ultrasound images. 


Abdul Gafoor, S., Sampathila, N., & KS, S. (2022). Deep learning model for detection of COVID-19 utilizing the chest X-ray images. Cogent Engineering, 9(1), Article 2079221. https://doi.org/10.1080/23311916.2022.2079221

Abiyev, R. H., & Ma’aitaH, M. K. S. (2018). Deep convolutional neural networks for chest diseases detection. Journal of healthcare engineering, 2018, Article 4168538. https://doi.org/10.1155/2018/4168538

Agrawal, T., & Choudhary, P. (2023). Segmentation and classification on chest radiography: a systematic survey. The Visual Computer, 39(3), 875-913. https://doi.org/10.1007/s00371-021-02352-7

Al-antari, M.A., Hua C.-H., Bang, J., & Lee, S. (2020). Fast deep learning computer-aided diagnosis of COVID-19 based on digital chest x-ray images. Appl Intelligence, 51, 2890–2907. https://doi.org/10.21203/rs.3.rs-36353/v2

Amyar, A., Modzelewski, R., Li, H., & Ruan, S. (2020). Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Computers in biology and medicine, 126, Article 104037. https://doi.org/10.1016/j.compbiomed.2020.104037

An, L., Peng, K., Yang, X., Huang, P., Luo, Y., Feng, P., & Wei, B. (2022). E-TBNet: Light Deep Neural Network for automatic detection of tuberculosis with X-ray DR Imaging. Sensors, 22(3), Article 821. https://doi.org/10.3390/s22030821

Anu Priya, P., & Vimina, E. R. (2021, March 26). Tuberculosis detection from CXR: an approach using transfer learning with various CNN architectures [Conference presentation]. International Conference on Communication, Computing and Electronics Systems: Proceedings of ICCCES 2020, Springer Singapore. https://doi.org/10.1007/978-981-33-4909-4_31

Arias-Garzón, D., Alzate-Grisales, J. A., Orozco-Arias, S., Arteaga-Arteaga, H. B., Bravo-Ortiz, M. A., Mora-Rubio, A., ... & Tabares-Soto, R. (2021). COVID-19 detection in X-ray images using convolutional neural networks. Machine Learning with Applications, 6, Article 100138. https://doi.org/10.1016/j.mlwa.2021.100138

Arifin, F., Artanto, H., & Nurhasanah, T. S. G. (2021). Fast COVID-19 detection of chest X-ray images using single shot detection MobileNet convolutional neural networks. Journal of Southwest Jiaotong University, 56(2), 235-248. https://doi.org/10.35741/issn.0258-2724.56.2.19

Arsalan, M., Owais, M., Mahmood, T., Choi, J., & Park, K. R. (2020). Artificial intelligence-based diagnosis of cardiac and related diseases. Journal of Clinical Medicine, 9(3), Article 871. https://doi.org/10.3390/jcm9030871

Asif, M., Rajab, T., Hussain, S., Rashid, M., Wasi, S., Ahmed, A., & Kanwal, K. (2022). Performance Evaluation of Deep Learning Algorithm Using High-End Media Processing Board in Real-Time Environment. Journal of Sensors, 2022. Article 6335118. https://doi.org/10.1155/2022/6335118

Athanazio, R. (2012). Airway disease: similarities and differences between asthma, COPD and bronchiectasis. Clinics, 67(11), 1335-1343. https://doi.org/10.6061/clinics/2012 (11)19

Ausawalaithong, W., Thirach, A., Marukatat, S., & Wilaiprasitporn, T. (2018, November 21-24). Automatic lung cancer prediction from chest X-ray images using the deep learning approach [Conference presentation]. 2018 11th Biomedical Engineering International Conference (BMEiCON) . IEEE. https://doi.org/10.1109/BMEiCON.2018.8609997

Ayaz, M., Shaukat, F., & Raja, G. (2021). Ensemble learning based automatic detection of tuberculosis in chest X-ray images using hybrid feature descriptors. Physical and Engineering Sciences in Medicine, 44(1), 183-194. https://doi.org/10.1007/s13246-020-00966-0

Barsanti, C., Lenzarini, F., & Kusmic, C. (2015). Diagnostic and prognostic utility of non-invasive imaging in diabetes management. World journal of diabetes, 6(6), 792-806. https://doi.org/10.4239/wjd.v6.i6.792

Bharati, S., Podder, P., & Mondal, M. R. H. (2020). Hybrid deep learning for detecting lung diseases from X-ray images. Informatics in Medicine Unlocked, 20, Article 100391. https://doi.org/10.1016/j.imu.2020.100391

Bustos, A., Pertusa, A., Salinas, J. M., & de la Iglesia-Vayá, M. (2020). Padchest: A large chest x-ray image dataset with multi-label annotated reports. Medical image analysis, 66, Article 101797. https://doi.org/10.1016/j.media.2020.101797

Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K. G., & Murphy, K. (2021). Deep learning for chest X-ray analysis: A survey. Medical Image Analysis, 72, Article 102125. https://doi.org/10.1016/j.media.2021.102125

Candemir, S., Jaeger, S., Palaniappan, K., Musco, J. P., Singh, R. K., Xue, Z., ... & McDonald, C. J. (2013). Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE transactions on medical imaging, 33(2), 577-590. https://doi.org/10.1109/TMI.2013.2290491

Candemir, S., Rajaraman, S., Thoma, G., & Antani, S. (2018). Deep learning for grading cardiomegaly severity in chest x-rays: an investigation. In 2018 IEEE Life Sciences Conference (LSC) (pp. 109-113). IEEE. https://doi.org/10.1109/lsc.2018.8572113

Cha, M. J., Chung, M. J., Lee, J. H., & Lee, K. S. (2019). Performance of deep learning model in detecting operable lung cancer with chest radiographs. Journal of thoracic imaging, 34(2), 86-91. https://doi.org/10.1097/RTI.0000000000000388

Chamveha, I., Promwiset, T., Tongdee, T., Saiviroonporn, P., & Chaisangmongkon, W. (2020). Automated cardiothoracic ratio calculation and cardiomegaly detection using deep learning approach. arXiv preprint arXiv:2002.07468. https://doi.org/10.48550/arXiv.2002.07468

Cohen, J. P., Morrison, P., Dao, L., Roth, K., Duong, T. Q., & Ghassemi, M. (2020). Covid-19 image data collection: Prospective predictions are the future. arXiv preprint arXiv:2006.11988. https://doi.org/10.48550/arXiv.2006.11988

Demner-Fushman, D., Kohli, M. D., Rosenman, M. B., Shooshan, S. E., Rodriguez, L., Antani, S., ... & McDonald, C. J. (2016). Preparing a collection of radiology examinations for distribution and retrieval. Journal of the American Medical Informatics Association, 23(2), 304-310. https://doi.org/10.1093/jamia/ocv080

Devi, N., Murale, M., Prasanth, R. K., & Nilesh, D. (2022, January 28-29). Multi-Label Classification for Diagnosis of Tuberculosis from Chest X-Ray Images [Conference presentation]. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). IEEE. https://doi.org 10.1109/ACCAI53970.2022.9752472

Duong, L. T., Le, N. H., Tran, T. B., Ngo, V. M., & Nguyen, P. T. (2021). Detection of tuberculosis from chest X-ray images: Boosting the performance with vision transformer and transfer learning. Expert Systems with Applications, 184, Article 115519. https://doi.org/10.1016/j.eswa.2021.115519

Farooq, M., & Hafeez, A. (2020). Covid-resnet: A deep learning framework for screening of covid19 from radiographs. arXiv preprint arXiv:2003.14395. https://doi.org/10.48550/arXiv.2003.14395

Faruk, O., Ahmed, E., Ahmed, S., Tabassum, A., Tazin, T., Bourouis, S., & Monirujjaman Khan, M. (2021). A novel and robust approach to detect tuberculosis using transfer learning. Journal of healthcare engineering, 2021, 1-10. https://doi.org/10.1155/2021/1002799

Fati, S. M., Senan, E. M., & ElHakim, N. (2022). Deep and Hybrid Learning Technique for Early Detection of Tuberculosis Based on X-ray Images Using Feature Fusion. Applied Sciences, 12(14), Article 7092. https://doi.org/10.3390/ app12147092

Fernández, A., García, S., & Herrera, F. (2011, May). Addressing the Classification with Imbalanced Data: Open Problems and New Challenges on Class Distribution [Conference presentation]. International Conference on Hybrid Artificial Intelligence Systems. https://doi.org/10.1007/978-3-642-21219-2_1

Fernando, C., Kolonne, S., Kumarasinghe, H., & Meedeniya, D. (2022, February 23-24). Chest radiographs classification using multi-model deep learning: A comparative study [Conference presentation]. 2022 2nd International Conference on Advanced Research in Computing (ICARC). IEEE, Belihuloya, Sri Lanka. https://doi.org 10.1109/ICARC54489.2022.9753811

Gabruseva, T., Poplavskiy, D., & Kalinin, A. (2020, June 16-18). Deep learning for automatic pneumonia detection [Conference presentation]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 350-351). https://doi.org/10.1109/CVPRW50498.2020.00183

Guan, Q., Huang, Y., Zhong, Z., Zheng, Z., Zheng, L., & Yang, Y. (2018). Diagnose like a radiologist: Attention guided convolutional neural network for thorax disease classification. arXiv preprint arXiv:1801.09927. https://doi.org/10.48550/arXiv.1801.09927

Guo, R., Passi, K., & Jain, C. K. (2020). Tuberculosis diagnostics and localization in chest X-rays via deep learning models. Frontiers in Artificial Intelligence, 3, Article 583427. https://doi.org/10.3389/frai.2020.583427

Guo, Z., Wang, J., Wang, J., & Yuan, J. (2022). Lightweight YOLOv4 with Multiple Receptive Fields for Detection of Pulmonary Tuberculosis. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/9465646

HM Hospitals, (2020). Covid Data Save Lives. Retrieved form. https://www.hmhospitales.com/coronavirus/covid-data-save-lives/english-version

Hollings, N., & Shaw, P. (2002). Diagnostic imaging of lung cancer. European Respiratory Journal, 19(4), 722-742. https://doi.org/10.1183/09031936.02.00280002

Hwang, E. J., Park, S., Jin, K. N., Im Kim, J., Choi, S. Y., Lee, J. H., ... & Park, C. M. (2019). Development and validation of a deep learning–based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA network open, 2(3), e191095-e191095. https://doi.org/10.1001/jamanetworkopen.2019.1095

Hwang, E. J., Park, S., Jin, K. N., Kim, J. I., Choi, S. Y., Lee, J. H., ... & Deep Learning-Based Automatic Detection Algorithm Development and Evaluation Group. (2019). Development and validation of a deep learning–based automatic detection algorithm for active pulmonary tuberculosis on chest radiographs. Clinical infectious diseases, 69(5), 739-747. https://doi.org/10.1093/cid/ciy967

Ibrahim, A. U., Guler, E., Guvenir, M., Suer, K., Serte, S., & Ozsoz, M. (2021). Automated detection of Mycobacterium tuberculosis using transfer learning. The Journal of Infection in Developing Countries, 15(05), 678-686. https://doi.org/10.3855/jidc.13532

Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., ... & Ng, A. Y. (2019, July). Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 590-597. https://doi.org/10.1609/aaai.v33i01.3301590.

Islam, M. T., Aowal, M. A., Minhaz, A. T., & Ashraf, K. (2017). Abnormality detection and localization in chest x-rays using deep convolutional neural networks. arXiv preprint arXiv:1705.09850. https://doi.org/10.48550/arXiv.1705.09850

Jaeger, S., Candemir, S., Antani, S., Wáng, Y. X. J., Lu, P. X., & Thoma, G. (2014). Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quantitative imaging in medicine and surgery, 4(6), 475. https://doi.org/10.3978/j.issn.2223-4292.2014.11.20

Jain, R., Gupta, M., Taneja, S., & Hemanth, D. J. (2021). Deep learning based detection and analysis of COVID-19 on chest X-ray images. Applied Intelligence, 51, 1690-1700. https://doi.org/10.1007/s10489-020-01902-1

Jaiswal, A. K., Tiwari, P., Kumar, S., Gupta, D., Khanna, A., & Rodrigues, J. J. (2019). Identifying pneumonia in chest X-rays: A deep learning approach. Measurement, 145, 511-518. https://doi.org/10.1016/j.measurement.2019.05.07

Jasthy, S., Vangipuram, R., & Dutta, S. R. (2021, December). A systematic review and analysis on deep learning techniques used in diagnosis of various categories of lung diseases. Mendel,27(2), 80-89. https://doi.org/10.13164/mendel.2021.2.080

Johnson, A. E., Pollard, T. J., Berkowitz, S. J., Greenbaum, N. R., Lungren, M. P., Deng, C. Y., ... & Horng, S. (2019). MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Scientific data, 6(1), 317. https://doi.org/10.1038/s41597-019-0322-0

Kamil, M. Y., & Hashem, S. A. (2022, December). Segmentation of Chest X-Ray Images Using U-Net Model. Mendel, 28(2), 49-53. https://doi.org/10.13164/mendel.2022.2.049

Kermany, D., Zhang, K., & Goldbaum, M. (2018). Labeled optical coherence tomography (oct) and chest x-ray images for classification. Mendeley data, 2(2), 651. DOI:10.17632/rscbjbr9sj.2

Khasawneh, N., Fraiwan, M., Fraiwan, L., Khassawneh, B., & Ibnian, A. (2021). Detection of COVID-19 from chest x-ray images using deep convolutional neural networks. Sensors, 21(17), 5940. https://doi.org/10.3390/s21175940

Kieu, S. T. H., Bade, A., Hijazi, M. H. A., & Kolivand, H. (2020). A survey of deep learning for lung disease detection on medical images: state-of-the-art, taxonomy, issues and future directions. Journal of imaging, 6(12), 131. https://doi.org/10.3390/jimaging6120131

Kim, S., Rim, B., Choi, S., Lee, A., Min, S., & Hong, M. (2022). Deep learning in multi-class lung diseases’ classification on chest X-ray images. Diagnostics, 12(4), 915. https://doi.org/10.3390/diagnostics12040915

Kolonne, S., Fernando, C., Kumarasinghe, H., & Meedeniya, D. (2021, December 7-8). MobileNetV2 based chest x-rays classification [Conference preseatation]. 2021 International Conference on Decision Aid Sciences and Application (DASA) . IEEE. https://doi.org/10.1109/DASA53625.2021.9682248

Kumar, P., Grewal, M., & Srivastava, M. M. (2017, June 27-29). Boosted cascaded convnets for multilabel classification of thoracic diseases in chest radiographs [Conference presentation]. Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, Proceedings 15, Springer International Publishing. https://doi.org/10.48550/arXiv.1711.08760

Kumarasinghe, K. A. S. H., Kolonne, S. L., Fernando, K. C. M., & Meedeniya, D. (2022). U-Net Based Chest X-ray Segmentation with Ensemble Classification for Covid-19 and Pneumonia. International Journal of Online & Biomedical Engineering, 18(7), 161-175. https://doi.org/10.3991/ijoe.v18i07.30807

Kundu, R., Das, R., Geem, Z. W., Han, G. T., & Sarkar, R. (2021). Pneumonia detection in chest X-ray images using an ensemble of deep learning models. PloS one, 16(9), Article e0256630. https://doi.org/10.1371/journal.pone.0256630

Lee, M. S., Kim, Y. S., Kim, M., Usman, M., Byon, S. S., Kim, S. H., ... & Lee, B. D. (2021). Evaluation of the feasibility of explainable computer-aided detection of cardiomegaly on chest radiographs using deep learning. Scientific Reports, 11(1), 16885. https://doi.org/10.1038/s41598-021-96433-1

Li, Z., Kamnitsas, K., & Glocker, B. (2019, October 13-17). Overfitting of neural nets under class imbalance: Analysis and improvements for segmentation [Conference presentation]. Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, Proceedings, Part III 22, Springer International Publishing. https://doi.org/10.1007/978-3-030-32248-9_45

Lin, C., Zheng, Y., Xiao, X., & Lin, J. (2022). CXR-RefineDet: Single-shot refinement neural network for chest X-ray radiograph based on multiple lesions detection. Journal of Healthcare Engineering, 2022, Article 4182191. https://doi.org/10.1155/2022/4182191

Liu, X., Zhang, Y., Jing, H., Wang, L., & Zhao, S. (2020). Ore image segmentation method using U-Net and Res_Unet convolutional networks. RSC advances, 10(16), 9396-9406. https://doi.org/10.1039/C9RA05877J

Lu, X., Nanehkaran, Y. A., & Karimi Fard, M. (2021). A method for optimal detection of lung cancer based on deep learning optimized by marine predators algorithm. Computational Intelligence and Neuroscience, 2021, 1-10. https://doi.org/10.1155/2021/3694723

Luo, Y., Zhang, Y., Sun, X., Dai, H., & Chen, X. (2021). Intelligent solutions in chest abnormality detection based on YOLOv5 and ResNet50. Journal of healthcare engineering, 2021, Article 2267635. https://doi.org/10.1155/2021/2267635

Ma, C., Wang, H., & Hoi, S. C. (2020). Multi-label Thoracic Disease Image Classification with Cross-Attention Networks. arXiv, 1-9. https://doi.org/10.48550/arXiv.2007.10859

Ma, Y., & Lv, W. (2022). Identification of Pneumonia in Chest X-ray Image Based on Transformer. International Journal of Antennas and Propagation, 2022. Article 5072666, 1-8. https://doi.org/10.1155/2022/5072666

Mahajan, S., Raina, A., Gao, X. Z., & Pandit, A. K. (2022). COVID‐19 detection using hybrid deep learning model in chest x‐rays images. Concurrency and Computation: Practice and Experience, 34(5), e6747. https://doi.org/10.1002/cpe.6747

Majkowska, A., Mittal, S., Steiner, D. F., Reicher, J. J., McKinney, S. M., Duggan, G. E., ... & Shetty, S. (2020). Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation. Radiology, 294(2), 421-431. https://doi.org/10.1148/radiol.2019191293

Malik, H., & Anees, T. (2022). BDCNet: Multi-classification convolutional neural network model for classification of COVID-19, pneumonia, and lung cancer from chest radiographs. Multimedia Systems, 28(3), 815-829. https://doi.org/10.1007/s00530-021-00878-3

Manickam, A., Jiang, J., Zhou, Y., Sagar, A., Soundrapandiyan, R., & Samuel, R. D. J. (2021). Automated pneumonia detection on chest X-ray images: A deep learning approach with different optimizers and transfer learning architectures. Measurement, 184, Article 109953. https://doi.org/10.1016/j.measurement.2021.109953

Meedeniya, D., Kumarasinghe, H., Kolonne, S., Fernando, C., De la Torre Díez, I., & Marques, G. (2022). Chest X-ray analysis empowered with deep learning: A systematic review. Applied Soft Computing, Article 109319. https://doi.org/10.1016/j.asoc.2022.109319

Moses, D. A. (2021). Deep learning applied to automatic disease detection using chest x‐rays. Journal of Medical Imaging and Radiation Oncology, 65(5), 498-517. https://doi.org/10.1111/1754-9485.13273

Mousavi, Z., Shahini, N., Sheykhivand, S., Mojtahedi, S., & Arshadi, A. (2022). COVID-19 detection using chest X-ray images based on a developed deep neural network. SLAS technology, 27(1), 63-75. https://doi.org/10.1016/j.slast.2021.10.011

Munawar, F., Azmat, S., Iqbal, T., Grönlund, C., & Ali, H. (2020). Segmentation of lungs in chest X-ray image using generative adversarial networks. IEEE Access, 8, 153535-153545. https://doi.org/10.1109/ACCESS.2020.3017915

Nam, J. G., Park, S., Hwang, E. J., Lee, J. H., Jin, K. N., Lim, K. Y., ... & Park, C. M. (2019). Development and validation of deep learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology, 290(1), 218-228. https://doi.org/10.1148/radiol.2018180237

Nguyen, H. Q., Lam, K., Le, L. T., Pham, H. H., Tran, D. Q., Nguyen, D. B., ... & Vu, V. (2022). VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations. Scientific Data, 9(1), 429. https://doi.org/10.1038/s41597-022-01498-w

Oloko-Oba, M., & Viriri, S. (2021). Ensemble of EfficientNets for the Diagnosis of Tuberculosis. Computational Intelligence and Neuroscience, 2021. Article 9790894 https://doi.org/10.1155/2021/9790894

Oltu, B., Güney, S., Dengiz, B., & Ağıldere, M. (2021, July 26-28). Automated tuberculosis detection using pre-trained CNN and SVM [Conference presentation]. 2021 44th International Conference on Telecommunications and Signal Processing (TSP), IEEE. https://doi.org/10.1109/TSP52935.2021.9522644

Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., Yildirim, O., & Acharya, U. R. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in biology and medicine, 121, Article 103792. https://doi.org/10.1016/j.compbiomed.2020.103792

Pham, V. T. N., Nguyen, Q. C., & Nguyen, Q. V. (2022). Chest X-Rays Abnormalities Localization and Classification Using an Ensemble Framework of Deep Convolutional Neural Networks. Vietnam Journal of Computer Science, 10(1), 1-19. https://doi.org/10.1142/S2196888822500336

Prior, F., Smith, K., Sharma, A., Kirby, J., Tarbox, L., Clark, K., ... & Freymann, J. (2017). The public cancer radiology imaging collections of The Cancer Imaging Archive. Scientific data, 4(1), 1-7. https://doi.org/10.1038/sdata.2017.124

Que, Q., Tang, Z., Wang, R., Zeng, Z., Wang, J., Chua, M., ... & Veeravalli, B. (2018, July 18-21). CardioXNet: automated detection for cardiomegaly based on deep learning [Conference presentation]. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA. https://doi.org/10.1109/embc.2018.8512374

Rahman, T., Khandakar, A., Kadir, M. A., Islam, K. R., Islam, K. F., Mazhar, R., ... & Chowdhury, M. E. (2020). Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization. IEEE Access, 8, 191586-191601. https://doi.org/10.1109/ACCESS.2020.3031384

Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Kiranyaz, S., Kashem, S. B. A., ... & Chowdhury, M. E. (2021a). Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in biology and medicine, 132, Article 104319. https://doi.org/10.1016/j.compbiomed.2021.104319

Rahman, M. F., Tseng, T. L. B., Pokojovy, M., Qian, W., Totada, B., & Xu, H. (2021 b). An automatic approach to lung region segmentation in chest X-ray images using adapted U-Net architecture. Medical Imaging 2021: Physics of Medical Imaging, 11595, 894-901. https://doi.org/10.1117/12.2581882

Ramana, K., Kumar, M. R., Sreenivasulu, K., Gadekallu, T. R., Bhatia, S., Agarwal, P., & Idrees, S. M. (2022). Early prediction of lung cancers using deep saliency capsule and pre-trained deep learning frameworks. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.886739

Rosenthal, A., Gabrielian, A., Engle, E., Hurt, D. E., Alexandru, S., Crudu, V., ... & Tartakovsky, M. (2017). The TB portals: an open-access, web-based platform for global drug-resistant-tuberculosis data sharing and analysis. Journal of clinical microbiology, 55(11), 3267-3282. https://doi.org/10.1128/JCM.01013-17

Ryoo, S., & Kim, H. J. (2014). Activities of the Korean institute of tuberculosis. Osong public health and research perspectives, 5, S43-S49. https://doi.org/10.1016/j.phrp.2014.10.007

Saiviroonporn, P., Rodbangyang, K., Tongdee, T., Chaisangmongkon, W., Yodprom, P., Siriapisith, T., ... & Thiravit, P. (2021). Cardiothoracic ratio measurement using artificial intelligence: observer and method validation studies. BMC Medical Imaging, 21(1), Article 95. https://doi.org/10.1186/s12880-021-00625-0

Saxena, A., & Singh, S. P. (2022). A Deep Learning Approach for the Detection of COVID-19 from Chest X-Ray Images using Convolutional Neural Networks. arXiv preprint arXiv:2201.09952. https://doi.org/doi.org/10.48550/arXiv.2201.09952

Schultheiss, M., Schober, S. A., Lodde, M., Bodden, J., Aichele, J., Müller-Leisse, C., ... & Pfeiffer, D. (2020). A robust convolutional neural network for lung nodule detection in the presence of foreign bodies. Scientific Reports, 10(1), Article 12987. https://doi.org/10.1038/s41598-020-69789-z

Shamrat, F. J. M., Azam, S., Karim, A., Islam, R., Tasnim, Z., Ghosh, P., & De Boer, F. (2022). LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images. Journal of Personalized Medicine, 12(5), Article 680. https://doi.org/10.3390/jpm12050680

Shih, G., Wu, C. C., Halabi, S. S., Kohli, M. D., Prevedello, L. M., Cook, T. S., ... & Stein, A. (2019). Augmenting the national institutes of health chest radiograph dataset with expert annotations of possible pneumonia. Radiology: Artificial Intelligence, 1(1), Article e180041. https://doi.org/10.1148/ryai.2019180041

Shimazaki, A., Ueda, D., Choppin, A., Yamamoto, A., Honjo, T., Shimahara, Y., & Miki, Y. (2022). Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method. Scientific Reports, 12(1), Article 727. https://doi.org/10.1038/s41598-021-04667-w

Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, K. I., ... & Doi, K. (2000). Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists' detection of pulmonary nodules. American Journal of Roentgenology, 174(1), 71-74. https://doi.org/10.2214/ajr.174.1.1740071

Showkatian, E., Salehi, M., Ghaffari, H., Reiazi, R., & Sadighi, N. (2022). Deep learning-based automatic detection of tuberculosis disease in chest X-ray images. Polish Journal of Radiology, 87(1), 118-124. https://doi.org/10.5114/pjr.2022.113435

Sim, Y., Chung, M. J., Kotter, E., Yune, S., Kim, M., Do, S., ... & Choi, B. W. (2020). Deep convolutional neural network–based software improves radiologist detection of malignant lung nodules on chest radiographs. Radiology, 294(1), 199-209. https://doi.org/10.1148/radiol.2019182465

Singh, D., Kumar, V., Yadav, V., & Kaur, M. (2021). Deep neural network-based screening model for COVID-19-infected patients using chest X-ray images. International Journal of Pattern Recognition and Artificial Intelligence, 35(03), Article 2151004. https://doi.org/10.1142/S0218001421510046

Singh, R., Kalra, M. K., Nitiwarangkul, C., Patti, J. A., Homayounieh, F., Padole, A., ... & Digumarthy, S. R. (2018). Deep learning in chest radiography: detection of findings and presence of change. PloS one, 13(10), Article e0204155. https://doi.org/10.1371/journal.pone.0204155

Sirazitdinov, I., Kholiavchenko, M., Mustafaev, T., Yixuan, Y., Kuleev, R., & Ibragimov, B. (2019). Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database. Computers & electrical engineering, 78, 388-399. https://doi.org/10.1016/j.compeleceng.2019.08.004

Sogancioglu, E., Murphy, K., Calli, E., Scholten, E. T., Schalekamp, S., & Van Ginneken, B. (2020). Cardiomegaly detection on chest radiographs: segmentation versus classification. IEEE Access, 8, 94631-94642. https://doi.org/10.1109/ACCESS.2020.2995567

Stephen, O., Sain, M., Maduh, U. J., & Jeong, D. U. (2019). An efficient deep learning approach to pneumonia classification in healthcare. Journal of healthcare engineering, 2019. Article 4180949. https://doi.org/10.1155/2019/4180949

Tabik, S., Gómez-Ríos, A., Martín-Rodríguez, J. L., Sevillano-García, I., Rey-Area, M., Charte, D., ... & Herrera, F. (2020). COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest X-ray images. IEEE journal of biomedical and health informatics, 24(12), 3595-3605. https://doi.org/10.1109/JBHI.2020.3037127

Tahir, A. M., Chowdhury, M. E., Khandakar, A., Rahman, T., Qiblawey, Y., Khurshid, U., ... & Hamid, T. (2021). COVID-19 infection localization and severity grading from chest X-ray images. Computers in biology and medicine, 139, 105002. https://doi.org/10.1016/j.compbiomed.2021.105002

Tang, Y. X., Tang, Y. B., Han, M., Xiao, J., & Summers, R. M. (2019, July 11). Abnormal chest x-ray identification with generative adversarial one-class classifier [Conference presentation]. 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019). IEEE. https://doi.org/10.1109/ISBI.2019.8759442

Torres-Robles, F., Rosales-Silva, A. J., Gallegos-Funes, F. J., & Bazán-Trujillo, I. (2014). A robust neuro-fuzzy classifier for the detection of cardiomegaly in digital chest radiographies. Dyna, 81(186), 35-41. https://doi.org/10.15446/dyna.v81n186.37797

Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., ... & Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of internal medicine, 169(7), 467-473. https://doi.org/10.7326/M18-0850

Varshni, D., Thakral, K., Agarwal, L., Nijhawan, R., & Mittal, A. (2019, October 17). Pneumonia detection using CNN based feature extraction [Conference presentation]. 2019 IEEE international conference on electrical, computer and communication technologies (ICECCT). IEEE. https://doi.org/10.1109/ICECCT.2019.8869364

Vayá, M. D. L. I., Saborit, J. M., Montell, J. A., Pertusa, A., Bustos, A., Cazorla, M., ... & Salinas, J. M. (2020). BIMCV COVID-19+: a large annotated dataset of RX and CT images from COVID-19 patients. arXiv preprint arXiv:2006.01174. https://doi.org/10.48550/arXiv.2006.01174

Wang, L., Lin, Z. Q., & Wong, A. (2020). Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Scientific reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-76550-z

Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., & Summers, R. M. (2017, November 9 ). Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases [Conference presentation]. Proceedings of the IEEE conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2017.369

Yoo, H., Kim, K. H., Singh, R., Digumarthy, S. R., & Kalra, M. K. (2020). Validation of a deep learning algorithm for the detection of malignant pulmonary nodules in chest radiographs. JAMA network open, 3(9), e2017135-e2017135. https://doi.org/10.1001/jamanetworkopen.2020.17135

Zhang, D., Ren, F., Li, Y., Na, L., & Ma, Y. (2021). Pneumonia detection from chest X-ray images based on convolutional neural network. Electronics, 10(13), Article 1512. https://doi.org/10.3390/electronics10131512

Zhou, L., Yin, X., Zhang, T., Feng, Y., Zhao, Y., Jin, M., ... & Lu, L. (2021). Detection and semiquantitative analysis of cardiomegaly, pneumothorax, and pleural effusion on chest radiographs. Radiology: Artificial Intelligence, 3(4), e200172.

Zhu, C. S., Pinsky, P. F., Kramer, B. S., Prorok, P. C., Purdue, M. P., Berg, C. D., & Gohagan, J. K. (2013). The prostate, lung, colorectal, and ovarian cancer screening trial and its associated research resource. Journal of the National Cancer Institute, 105(22), 1684-1693. https://doi.org/10.1093/jnci/djt281




How to Cite

Akanksha Soni, & Avinash Rai. (2023). A systematic survey on deep learning techniques for chest disease detection using chest radiographs. Journal of Current Science and Technology, 13(2), 267–295. https://doi.org/10.59796/jcst.V13N2.2023.1744



Research Article