Biogenic synthesis, characterization and applications of Tellurium nanoparticles from Chicoreus virgineus (Roding, 1798)
DOI:
https://doi.org/10.59796/jcst.V13N2.2023.1742Keywords:
antibacterial, antifungal, antioxidant activities, atomic force microscopy, Chicoreus virgineus, tellurium nanoparticle, UV-visible spectroscopyAbstract
Nanoparticles will offer a better perspective for the biogenic manner of the future. The green material's reducing agents offer a crucial pathway for the synthesis of metal nanoparticles. A biological method was adopted to develop tellurium mediated nanoparticles with the shell of marine gastropod Chicoreus virgineus. 10.7 g of Tellurium tetrachloride was dissolved in 1 L of the double distilled water to prepare 0.01 M Solution.The nanoparticle synthesis was confirmed by UV-Visible spectroscopy, the absorbance values of the nanoparticles generated were identified and the wavelength around 300nm was observed. The presence of reducing agents is indicated by Fourier Transform Infrared Spectroscopy. FTIR analysis showed the peak values from 3336.35 cm-1 to 708.30 cm-1. Images from atomic force microscopy and scanning electron microscopy were used to display the surface morphology. The rod like structure and spherical, uniform shape of tellurium nanoparticles were observed. The particle size of 21.31 nm was recorded for the synthesized nanoparticles. The antibacterial, antifungal, DPPH scavenging, and hydrogen peroxide scavenging assay activity of the produced nanoparticles was tested. The maximum zone of inhibition was observed against the pathogens viz., Propionibacterium acnes (6.5 mm) and Aspergillus fumigatus (16.5 mm). The highest percentage inhibition of 71.4% for DPPH scavenging activityand 92.12% for hydrogen peroxide assay were observed. Theoutcomes demonstrated that this affordable synthesis found many useful biomedical applications. The current investigation is one of the eco-friendly methods of synthesis and it is an easy method for the synthesis of nanoparticles. These nanoparticles act as an effective antibacterial, antifungal and antioxidant agent. Hence it will show a greater scope in the medicinal field. The nanoparticles derived from marine gastropod Chicoreus virgineus has good biocompatibility. Only few studies have been reported earlier using the marine molluscs.
References
Bartosiak, M., Giersz, J., Jankowski, K. (2019). Analytical monitoring of selenium nanoparticles green synthesis using photochemical vapor generation coupled with MIP-OES and UV–Vis spectro-photometry. Microchemical Journal, 145, 1169-1175. https://doi.org/10.1016/j.microc.2018.12.024
Brown, C. D., Cruz, D. M., Roy, A. K., & Webster, T. J. (2018). Synthesis and characterization of PVP-coated tellurium nanorods and their antibacterial and anticancer properties. Journal of Nanoparticle Research, 20, 1-13. https://doi.org/10.1007/s11051-018-4354-8
Choi, W., Ha, Y., Gu, Y., Lee, C., Park, J., Jang, G., ... & Cho, S. (2019). Microbial tellurite reduction and production of elemental tellurium nanoparticles by novel bacteria isolated from wastewater. Journal of Industrial and Engineering Chemistry, 78, 246-256. https://doi.org/10.1016/j.jiec.2019.06.006
Cui, D., Liang, T., Sun, L., Meng, L., Yang, C., Wang, L., ... & Li, Q. (2018). Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharmaceutical biology, 56(1), 528-534. https://doi.org/10.1080/13880209.2018.1510974
Diko, C. S., Zhang, H., Lian, S., Fan, S., Li, Z., & Qu, Y. (2020). Optimal synthesis conditions and characterization of selenium nanoparticles in Trichoderma sp. WL-Go culture broth. Materials Chemistry and Physics, 246, Article 122583. https://doi.org/10.1016/j.matchemphys.2019.122583
De Magaldi, S. W., & Camero, T. (1997). Suceptibilidad de Candida albicans In vitro mediante los posos de difusión. Bol. venez. infectol, 7(1), 5-8. Retrieved from https://pesquisa.bvsalud.org/portal/resource/pt/lil-212701
El-Sayyad, G. S., El-Bastawisy, H. S., Gobara, M., & El-Batal, A. I. (2020). Gentamicin-assisted mycogenic selenium nanoparticles synthesized under gamma irradiation for robust reluctance of resistant urinary tract infection-causing pathogens. Biological trace element research, 195, 323-342. https://doi.org/10.1007/s12011-019-01842-z
Estevam, E. C., Griffin, S., Nasim, M. J., Denezhkin, P., Schneider, R., Lilischkis, R., ... & Jacob, C. (2017). Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise? Journal of hazardous materials, 324, 22-30. https://doi.org/10.1016/j.jhazmat.2016.02.001
Fan, D., Li, L., Li, Z., Zhang, Y., Ma, X., Wu, L., ... & Guo, F. (2020). Biosynthesis of selenium nanoparticles and their protective, antioxidative effects in streptozotocin induced diabetic rats. Science and technology of advanced materials, 21(1), 505-514. https://doi.org/10.1080/14686996.2020.1788907
Fernández-Llamosas, H., Castro, L., Blázquez, M. L., Díaz, E., & Carmona, M. (2016). Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microbial cell factories, 15(1), 1-10. https://doi.org/10.1186/s12934-016-0510-y
Figueroa, M., Fernandez, V., Arenas-Salinas, M., Ahumada, D., Muñoz-Villagrán, C., Cornejo, F., ... & Arenas, F. (2018). Synthesis and antibacterial activity of metal (loid) nanostructures by environmental multi-metal (loid) resistant bacteria and metal (loid)-reducing flavoproteins. Frontiers in Microbiology, 9, Article 959. https://doi.org/10.3389/fmicb.2018.00959
Fissan, H., Ristig, S., Kaminski, H., Asbach, C., & Epple, M. (2014). Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Analytical Methods, 6(18), 7324-7334. https://doi.org/10.1039/C4AY01203H
Gao, X., Li, X., Mu, J., Ho, C. T., Su, J., Zhang, Y., & Xie, Y. (2020). Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporusum bellatus polysaccharide. International journal of biological macromolecules, 152, 605-615. https://doi.org/10.1016/j.ijbiomac.2020.02.199
Gülcin, İ. (2006). Antioxidant and antiradical activities of L-carnitine. Life sciences, 78(8), 803-811. https://doi.org/10.1016/j.lfs.2005.05.103
Hu, T., Li, H., Li, J., Zhao, G., Wu, W., Liu, L., ... & Guo, Y. (2018). Absorption and bio-transformation of selenium nanoparticles by wheat seedlings (Triticumaestivum L.). Frontiers in Plant Science, 9, 597. https://doi.org/10.3389/fpls.2018.00597
Jawad, N. A., & Hassan, K. H. (2021). Structural Characterization of NiO NanoparticlesPrepared by Green Chemistry Synthesis using Arundodonaxi Leaves Extract. Journal of Physics: Conference Series, 1818(1), 012007, https://doi.org/10.1088/1742-6596/1818/1/012007
Jin, Y., Cai, L., Yang, Q., Luo, Z., Liang, L., Liang, Y., ... & Zhou, F. (2020). Anti-leukemia activities of selenium nanoparticles embedded in nanotube consisted of triple-helix β-D-glucan. Carbohydrate polymers, 240, 116329. https://doi.org/10.1016/j.carbpol.2020.116329
Khalef, W. K., Marzoog, T. R., & Faisal, A. D. (2021). Synthesis and characterization of tellurium oxide nanoparticles using pulse laser ablation and study their antibacterial activity. Journal of Physics: Conference Series, 1795(1), 012049. https://doi.org/10.1088/1742-6596/1795/1/012049
Kharat, S. N., &Mendhulkar, V. D. (2016). Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Materials Science and Engineering: C, 62, 719-724. https://doi.org/10.1016/j.msec.2016.02.024
Khoei, N. S., Lampis, S., Zonaro, E., Yrjälä, K., Bernardi, P., &Vallini, G. (2017). Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. New biotechnology, 34, 1-11. https://doi.org/10.1016/j.nbt.2016.10.002
Li, W., Zamani, R., Rivera Gil, P., Pelaz, B., Ibáñez, M., Cadavid, D., ... & Cabot, A. (2013). CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. Journal of the American Chemical Society, 135(19), 7098-7101. https://doi.org/10.1021/ja401428e
Lian, S., Diko, C. S., Yan, Y., Li, Z., Zhang, H., Ma, Q., & Qu, Y. (2019). Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech, 9, 1-8. https://doi.org/10.1007/s13205-019-1748-y
Liang, T., Qiu, X., Ye, X., Liu, Y., Li, Z., Tian, B., & Yan, D. (2020). Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech, 10, 1-6. https://doi.org/10.1007/s13205-019-1999-7
Medina Cruz, D., Mi, G., & Webster, T. J. (2018). Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin‐resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Journal of Biomedical Materials Research Part A, 106(5), 1400-1412. https://doi.org/10.1002/jbm.a.36347
Mosallam, F. M., El-Sayyad, G. S., Fathy, R. M., & El-Batal, A. I. (2018). Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microbial pathogenesis, 122, 108-116. https://doi.org/10.1016/j.micpath.2018.06.013
Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871-12934. https://doi.org/10.1039/C8NR02278J
Mulla, N. A., Otari, S. V., Bohara, R. A., Yadav, H. M., & Pawar, S. H. (2020). Rapid and size-controlled biosynthesis of cytocompatible selenium nanoparticles by Azadirachta indica leaves extract for antibacterial activity. Materials Letters, 264, 127353. https://doi.org/10.1016/j.matlet.2020.127353
Panáček, A., Kolář, M., Večeřová, R., Prucek, R., Soukupová, J., Kryštof, V., ... & Kvítek, L. (2009). Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 30(31), 6333-6340. https://doi.org/10.1016/j.biomaterials.2009.07.065
Patra, J. K., & Baek, K. H. (2016). Biosynthesis of silver nanoparticles using aqueous extract of silky hairs of corn and investigation of its antibacterial and anticandidal synergistic activity and antioxidant potential. IET nanobiotechnology, 10(5), 326-333. https://doi.org/10.1049/iet-nbt.2015.0102
Prasher, P., Singh, M., &Mudila, H. (2018). Green synthesis of silver nanoparticles and their antifungal properties. BioNanoScience, 8, 254-263. https://doi.org/10.1007/s12668-017-0481-4
Priya, R. S., Geetha, D., & Ramesh, P. S. (2016). Antioxidant activity of chemically synthesized AgNPs and biosynthesized Pongamia pinnata leaf extract mediated AgNPs–A comparative study. Ecotoxicology and environmental safety, 134, 308-318. https://doi.org/10.1016/j.ecoenv.2015.07.037
Ruch, R. J., Cheng, S. J., &Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10(6), 1003-1008. https://doi.org/10.1093/carcin/10.6.1003
Shakibaie, M., Adeli-Sardou, M., Mohammadi-Khorsand, T., ZeydabadiNejad, M., Amirafzali, E., Amirpour-Rostami, S., ... & Forootanfar, H. (2017). Antimicrobial and antioxidant activity of the biologically synthesized tellurium nanorods; a preliminary in vitro study. Iranian journal of biotechnology, 15(4), 268. https://doi.org/10.15171/ijb.1580
Tanaka, Y. K., Takada, S., Kumagai, K., Kobayashi, K., Hokura, A., & Ogra, Y. (2020). Elucidation of tellurium biogenic nanoparticles in garlic, Allium sativum, by inductively coupled plasma-mass spectrometry. Journal of Trace Elements in Medicine and Biology, 62, 126628. https://doi.org/10.1016/j.jtemb.2020.126628
Tugarova, A. V., Mamchenkova, P. V., Khanadeev, V. A., & Kamnev, A. A. (2020). Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation. New biotechnology, 58, 17-24. https://doi.org/10.1016/j.nbt.2020.02.003
Upadhyay, S., Parekh, K., & Pandey, B. (2016). Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. Journal of Alloys and Compounds, 678, 478-485. https://doi.org/10.1016/j.jallcom.2016.03.279
Vaigankar, D. C., Dubey, S. K., Mujawar, S. Y., D’Costa, A., & Shyama, S. K. (2018). Tellurite biotransformation and detoxification by Shewanellabaltica with simultaneous synthesis of tellurium nanorods exhibiting photo-catalytic and anti-biofilm activity. Ecotoxicology and environmental safety, 165, 516-526. https://doi.org/10.1016/j.ecoenv.2018.08.111
Vennila, K., Chitra, L., Balagurunathan, R., & Palvannan, T. (2018). Comparison of biological activities of selenium and silver nanoparticles attached with bioactive phytoconstituents: green synthesized using Spermacocehispida extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(1), 015005. https://doi.org/10.1088/2043-6254/aa9f4d
Wang, K., Zhang, X., Kislyakov, I. M., Dong, N., Zhang, S., Wang, G., ... & Wang, J. (2019). Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nature Communications, 10(1), 3985. https://doi.org/10.1038/s41467-019-11898-z
Zhang, D., Ma, X. L., Gu, Y., Huang, H., & Zhang, G. W. (2020). Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Frontiers in Chemistry, 8, 799. https://doi.org/10.3389/fchem.2020.00799
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.