Optimal feature selection and detection of sickle cell anemia detection using enhanced whale optimization with clustering based boosted C5.0 algorithm for tribes of Nilgiris
DOI:
https://doi.org/10.59796/jcst.V13N2.2023.1737Keywords:
classification, clustering based boosted C5.0 algorithm, enhanced whale optimization, features selection, sickle cell anemia, sickle cell diseaseAbstract
Degradation of red blood cells (RBC) causes many diseases, like sickle cell anemia. Diagnosing this disease takes more time because peripheral blood samples must be examined under the microscope. Since the isolated RBC observation is subjective and high error rate leads to reduce the accuracy, the technology is needed to perform this approach. To fulfil these requirements, optimal feature selection and detection of sickle cell anemia using enhanced whale optimization with clustering based boosted C5.0 algorithm in tribes of Nilgiris is proposed in this manuscript. The input dataset is taken from real data set via non-government organization named NAWA (situated in Kotagiri). The reason behind of Nilgiri region is considered in this work is a collection of sickle cell anemia test results of the tribe people who lives in different areas of Nilgiri region. These images are pre-processed using wavelet packet transform cochlear filter bank method to eradicate the noises and to improve the superiority of image. After that, the features are extracted using force-invariant improved feature extraction method. To select the optimal features, enhanced whale optimization (EWO) algorithm is used. These optimal features are classified utilizing clustering based boosted C5.0 algorithm. The proposed method is activated on PYTHON. The proposed method shows 52.32%, 43.78%, 32.78% and 45.90% higher accuracy compared with the existing methods, such as RGSA-MLP-SCA, CRFA-SVM-SCA, AO-LSTM-SCA and BOA-CNN-SCA.
References
Abdullahi, S. U., Wudil, B. J., Bello-Manga, H., Musa, A. B., Gambo, S., Galadanci, N. A., ... & DeBaun, M. R. (2020). Primary prevention of stroke in children with sickle cell anemia in sub-Saharan Africa: rationale and design of phase III randomized clinical trial. Pediatric Hematology and Oncology, 38(1), 49-64. https://doi.org/10.1080/08880018.2020.1810183
Balamanikandan, P., & Bharathi, S. J. (2022). A mathematical modelling to detect sickle cell anemia using Quantum graph theory and Aquila optimization classifier. Mathematical Biosciences and Engineering: MBE, 19(10), 10060-10077. https://doi.org/10.3934/mbe.2022470
Carden, M. A., Fasano, R. M., & Meier, E. R. (2020). Not all red cells sickle the same: contributions of the reticulocyte to disease pathology in sickle cell anemia. Blood Reviews, 40, Article 100637. https://doi.org/10.1016/j.blre.2019.100637
da Silva, M., Rodrigues, L., & Mari, J. F. (2020). Optimizing data augmentation policies for convolutional neural networks based on classification of sickle cells. In Anais do XVI Workshop de Visão Computacional (pp. 46-51). SBC. https://doi.org/10.5753/wvc.2020.13479
Delgado-Font, W., Escobedo-Nicot, M., González-Hidalgo, M., Herold-Garcia, S., Jaume-i-Capó, A., & Mir, A. (2020). Diagnosis support of sickle cell anemia by classifying red blood cell shape in peripheral blood images. Medical & Biological Engineering & Computing, 58(6), 1265-1284. https://doi.org/10.1007/s11517-019-02085-9
Diop, S., & Pirenne, F. (2021). Transfusion and sickle cell anemia in Africa. Transfusion Clinique etBiologique, 28(2), 143-145. https://doi.org/10.1016/j.tracli.2021.01.013
Domingos, I. F., Pereira-Martins, D. A., Sobreira, M. J., Oliveira, R. T., Alagbe, A. E., Lanaro, C., ...& Santos, M. N. (2020). High levels of proinflammatory cytokines IL-6 and IL-8 are associated with a poor clinical outcome in sickle cell anemia. Annals of Hematology, 99(5), 947-953. https://doi.org/10.1007/s00277-020-03978-8
Dong, M., & McGann, P. T. (2021). Changing the clinical paradigm of hydroxyurea treatment for sickle cell anemia through precision medicine. Clinical Pharmacology & Therapeutics, 109(1), 73-81. https://doi.org/10.1002/cpt.2028
Fields, M. E., Mirro, A. E., Binkley, M. M., Guilliams, K. P., Lewis, J. B., Fellah, S., ... & Lee, J. M. (2022). Cerebral oxygen metabolic stress is increased in children with sickle cell anemia compared to anemic controls. American Journal of Hematology, 97(6), 682-690. https://doi.org/10.1002/ajh.26485
Gour, A., Dogra, A., Bhatt, S., & Nandi, U. (2020). Effect of natural products on improvement of blood pathophysiology for management of sickle cell anemia. In Botanical Leads for Drug Discovery (pp. 51-65). Singapore: Springer, https://doi.org/10.1007/978-981-15-5917-4_3
Hamsa, S., Shahin, I., Iraqi, Y., & Werghi, N. (2020). Emotion recognition from speech using wavelet packet transform cochlear filter bank and random forest classifier. IEEE Access, 8, 96994-97006. https://doi.org 10.1109/ACCESS.2020.2991811
Hindawi, S., Badawi, M., Elfayoumi, R., Elgemmezi, T., Al Hassani, A., Raml, M., ...& Gholam, K. (2020). The value of transfusion of phenotyped blood units for thalassemia and sickle cell anemia patients at an academic center. Transfusion, 60, S15-S21. https://doi.org/10.1111/trf.15682
Islam, M. J., Ahmad, S., Haque, F., Reaz, M. B. I., Bhuiyan, M. A. S., & Islam, M. R. (2021). Force-invariant improved feature extraction method for upper-limb prostheses of transradial amputees. Diagnostics, 11(5), 843. https://doi.org/10.3390/diagnostics11050843
Olupot‐Olupot, P., Connon, R., Kiguli, S., Opoka, R. O., Alaroker, F., Uyoga, S., ...& Williams, T. N. (2022). A predictive algorithm for identifying children with sickle cell anemia among children admitted to hospital with severe anemia in Africa. American Journal of Hematology, 97(5), 527-536. https://doi.org/10.1002/ajh.26492
Onalo, R., Cooper, P., Cilliers, A., Vorster, B. C., Uche, N. A., Oluseyi, O. O., ... & Morris, C. R. (2021). Randomized control trial of oral arginine therapy for children with sickle cell anemia hospitalized for pain in Nigeria. American Journal of Hematology, 96(1), 89-97. https://doi.org/10.1002/ajh.26028
Petrović, N., Moyà-Alcover, G., Jaume-i-Capó, A., & González-Hidalgo, M. (2020). Sickle-cell disease diagnosis support selecting the most appropriate machine learning method: Towards a general and interpretable approach for cell morphology analysis from microscopy images. Computers in Biology and Medicine, 126, Article 104027. https://doi.org/10.1016/j.compbiomed.2020.104027
Rajesh, P., Shajin, F. H., Mouli Chandra, B., & Kommula, B. N. (2021). Diminishing Energy Consumption Cost and Optimal Energy Management of Photovoltaic Aided Electric Vehicle (PV-EV) By GFO-VITG Approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-19. https://doi.org/10.1080/15567036.2021.1986606
Rajesh, P., Shajin, F. H., Rajani, B., & Sharma, D. (2022). An optimal hybrid control scheme to achieve power quality enhancement in micro grid connected system. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 35, Article e3019. https://doi.org/10.1002/jnm.3019
Reeves, S. L., Freed, G. L., Madden, B., Wu, M., Miller, L., Cogan, L., & Dombkowski, K. J. (2022). Trends in quality of care among children with sickle cell anemia. Pediatric Blood & Cancer, 69(2), Article e29446. https://doi.org/10.1002/pbc.29446
Risoluti, R., Caprari, P., Gullifa, G., Massimi, S., Sorrentino, F., Maffei, L., & Materazzi, S. (2020). Innovative screening test for the early detection of sickle cell anemia. Talanta, 219, Article 121243. https://doi.org/10.1016/j.talanta.2020.121243
Shajin, F. H., Rajesh, P., & Raja, M. R. (2022). An efficient VLSI architecture for fast motion estimation exploiting zero motion prejudgment technique and a new quadrant-based search algorithm in HEVC. Circuits, Systems, and Signal Processing, 41(3), 1751-1774. https://doi.org/10.1007/s00034-021-01850-2
Shajin, F. H., Rajesh, P., & Thilaha, S. (2020). Bald eagle search optimization algorithm for cluster head selection with prolong lifetime in wireless sensor network. Journal of Soft Computing and Engineering Applications, 1(1), 1-7.
Singh, B. K., Ojha, A., Bhoi, K. K., Bissoyi, A., & Patra, P. K. (2021). Prediction of hydroxyurea effect on sickle cell anemia patients using machine learning method. In Advances in Biomedical Engineering and Technology (pp. 447-457). Singapore: Springer, https://doi.org/10.1007/978-981-15-6329-4_37
Soltani, S., Zakeri, A., Tabibzadeh, A., Zandi, M., Ershadi, E., AkhavanRezayat, S., & Farahani, A. (2020). A literature review on the parvovirus B19 infection in sickle cell anemia and β-thalassemia patients. Tropical Medicine and Health, 48(1), 1-8. https://doi.org/10.1186/s41182-020-00284-x
Valayapalayam Kittusamy, S. R., Elhoseny, M., & Kathiresan, S. (2022). An enhanced whale optimization algorithm for vehicular communication networks. International Journal of Communication Systems, 35(12), Article e3953. https://doi.org/10.1002/dac.3953
Verlhac, S., Gabor, F., Paillard, C., Chateil, J. F., Jubert, C., Petras, M., ...& Drepagreffe Investigators. (2021). Improved stenosis outcome in stroke‐free sickle cell anemia children after transplantation compared to chronic transfusion. British Journal of Haematology, 193(1), 188-193. https://doi.org/10.1111/bjh.17178
Wang, W. C., Zou, P., Hwang, S. N., Kang, G., Ding, J., Heitzer, A. M., ...& Hankins, J. S. (2021). Effects of hydroxyurea on brain function in children with sickle cell anemia. Pediatric Blood & Cancer, 68(10), Article e29254. https://doi.org/10.1002/pbc.29254
Wonkam, A., Chimusa, E. R., Mnika, K., Pule, G. D., Ngo Bitoungui, V. J., Mulder, N., ... & Adeyemo, A. (2020). Genetic modifiers of long‐term survival in sickle cell anemia. Clinical and Translational medicine, 10(4), Article e152. https://doi.org/10.1002/ctm2.152
Zhang, J., Chen, L., Tian, J. X., Abid, F., Yang, W., & Tang, X. F. (2021). Breast cancer diagnosis using cluster-based undersampling and boosted C5. 0 algorithm. International Journal of Control, Automation and Systems, 19(5), 1998-2008. https://doi.org/10.1007/s12555-019-1061-x
Zhang, M., Li, X., Xu, M., & Li, Q. (2020). Automated semantic segmentation of red blood cells for sickle cell disease. IEEE Journal of Biomedical and Health Informatics, 24(11), 3095-3102. https://doi.org/10.1109/JBHI.2020.3000484
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.