Enhanced artificial transgender longicorn algorithm & recurrent neural network based enhanced DC-DC converter for torque ripple minimization of BLDC motor


  • P. Rajesh Department of Electrical and Electronics Engineering, Anna University, Tamil Nadu, 600025, India
  • Francis H Shajin Department of Electronics and Communication Engineering, Anna University, Tamil Nadu, 600025, India
  • V. Ansal Department of Electrical and Electronics Engineering, NIT Goa, Goa,403401 India
  • Vijay Kumar B Department of Electrical and Electronics Engineering, Kakatiya Institute of Technology & Science, Warangal, 506015, India




BLDC, Cuk converter, EATLA, PSO, RNN, speed and current, torque ripples


This paper proposes an enhanced DC-DC converter with hybrid control method for torque ripple minimization of BLDC motor. Initially, a BLDC motor is controlled with an enhanced Cuk converter. The application of a switched inductor is used to update the Cuk converter operation. In this method, the control mechanism incorporates two control loops, namely, the speed control loop and torque control loop, which are utilized to recover the execution of BLDC. Thus, the proposed system is the combined performance of the Enhanced Artificial Transgender Longicorn Algorithm (EATLA) and Recurrent Neural Network (RNN) to improve control loop operations. In the Artificial Transgender Longicorn Algorithm (ATLA), the crossover and mutation approach are used as part of the scattering process to build the accuracy search process. In this article, the EATLA-RNN algorithm for limiting speed and torque error of BLDC motor is explored. However, the proposed method output is subject to input of the speed and torque controllers. The proposed topology with the controller is executed on MATLAB/Simulink workstation, and torque ripple minimization is analyzed toother existing approaches such as particle swarm optimization (PSO) and bacterial foraging (BF) algorithm.


Aghili, F. (2010). Ripple suppression of BLDC motors with finite driver/amplifer bandwidth at high velocity. IEEE transactions on control systems technology, 19(2), 391-397. https://doi.org/10.1109/TCST.2010.2045502

Aghili, F., Buehler, M., & Hollerbach, J. M. (2003). Experimental characterization and quadratic programming-based control of brushless-motors. IEEE transactions on control systems technology, 11(1), 139-146. https://doi.org/10.1109/TCST.2002.806453

Bist, V., & Singh, B. (2015). Reduced sensor configuration of a power factor correction based single-ended primary inductance converter fed brushless DC motor drive. IET Power Electronics, 8(9), 1606-1615. https://doi.org/10.1049/iet-pel.2014.0981

Çelikel, R., Özdemir, M., & Aydoğmuş, Ö. (2017). Implementation of a flywheel energy storage system for space applications. Turkish Journal of Electrical Engineering and Computer Sciences, 25(2), 1197-1210. https://doi.org/10.3906/elk-1507-259

Çelikel, R., & Aydoğmuş, Ö. (2019) A torque ripple minimization method for brushless dc motor in high speed applications. Journal of Engineering Research, 7(3), 200-214.

Çelikel, R., & Özdemir, M. (2019). A method for current control of the flywheel energy storage system used in satellites. Tehničkivjesnik, 26(3), 631-638. https://doi.org/10.17559/TV-20160328090219

Chen, W., Liu, Y., Li, X., Shi, T., & Xia, C. (2016). A novel method of reducing commutation torque ripple for brushless DC motor based on Cuk converter. IEEE Transactions on Power Electronics, 32(7), 5497-5508. https://doi.org/10.1109/TPEL.2016.2613126

Çorapsız, M. R., & Kahveci, H. (2022). Performance Analysis of Buck-Boost and SEPIC Converter for Commutation Torque Ripple Minimization in BLDC Motors. Electric Power Components andSystems, 49(11-12), 1052-1067. https://doi.org/10.1080/15325008.2022.2049653

Esmaili, A., & Babazadeh, H. (2020). A foreground self-calibration technique for high-resolution switched current R-2R digital-to-analog converters. Circuits, Systems, and Signal Processing, 39(5), 2307-2327. https://doi.org/10.1007/s00034-019-01284-x

Faiz, J., Nejadi-Koti, H., & Valipour, Z. (2017). Comprehensive review on inter-turn fault indexes in permanent magnet motors. IET Electric Power Applications, 11(1), 142-156. https://doi.org/10.1049/iet-epa.2016.0196

Fang, J., Li, H., & Han, B. (2011). Torque ripple reduction in BLDC torque motor with nonideal back EMF. IEEE transactions on power electronics, 27(11), 4630-4637. https://doi.org/10.1109/TPEL.2011.2176143

Foroozeshfar, R., Adib E., & Farzanehfard, H. (2014). New single-stage, single-switch, soft-switching three-phase SEPIC and Cuk-type power factor correction converters. IET Power Electronics, 7(7), 1878-1885. https://doi.org/10.1049/iet-pel.2013.0443

Ge, X., Zhu, Z. Q., Kemp, G., Moule, D., & Williams, C. (2016). Optimal step-skew methods for cogging torque reduction accounting for three-dimensional effect of interior permanent magnet machines. IEEE Transactions on Energy Conversion, 32(1), 222-232. https://doi.org/10.1109/TEC.2016.2620476

Guzman, H., Duran, M. J., Barrero, F., Bogado, B., & Toral, S. (2013). Speed control of five-phase induction motors with integrated open-phase fault operation using model-based predictive current control techniques. IEEE Transactions on Industrial Electronics, 61(9), 4474-4484. https://doi.org/10.1109/TIE.2013.2289882

Haddad Pajouh, H., Dehghantanha, A., Khayami, R., & Choo, K.K. (2018). A deep recurrent neural network based approach for internet of things malware threat hunting. Future Generation Computer Systems, 85, 88-96. https://doi.org/10.1016/j.future.2018.03.007

Han, X., Du, X., & Yu, P. (2020). ATLA: A novel metaheuristic optimization algorithm inspired by the mating search behavior of longicorn beetles in the nature. InIOP Conference Series: Materials Science and Engineering, 782(5),052028). IOP Publishing. https://doi.org/10.1088/1757-899X/782/5/052028

Ibrahim, H. E., Hassan, F. N., & Shomer, A. O. (2014). Optimal PID control of a brushless DC motor using PSO and BF techniques. Ain Shams Engineering Journal, 5(2), 391-398. https://doi.org/10.1016/j.asej.2013.09.013

Jiang, G., Xia, C., Chen, W., Shi, T., Li, X., & Cao, Y. (2017). Commutation torque ripple suppression strategy for brushless DC motors with a novel noninductive boost front end. IEEE Transactions on Power Electronics, 33(5), 4274-4284. https://doi.org/10.1109/TPEL.2017.2721439

Jiang, W., Huang, H., Wang, J., Gao, Y., & Wang, L. (2016). Commutation analysis of brushless DC motor and reducing commutation torque ripple in the two-phase stationary frame. IEEE Transactions on Power Electronics, 32(6), 4675-4682. https://doi.org/10.1109/TPEL.2016.2604422

Kommula, B. N., & Kota, V. R. (2022). An integrated converter topology for torque ripple minimization in BLDC motor using an ITSA technique. Journal of Ambient Intelligence and Humanized Computing, 13(4), 2289-2308. https://doi.org/10.1007/s12652-021-02986-4

Kumar, R., & Singh, B. (2017). Solar PV powered BLDC motor drive for water pumping using Cuk converter. IET Electric Power Applications, 11(2), 222-232. https://doi.org/10.1049/iet epa.2016.0328.

Li, Z., Kong, Q., Cheng, S., & Liu, J. (2020). Torque ripple suppression of brushless DC motor drives using an alternating two-phase and three-phase conduction mode. IET Power Electronics, 13(8), 1622-1629. https://doi.org/10.1049/iet-pel.2019.0960.

Lu, H., Zhang, L., & Qu, W. (2008). A new torque control method for torque ripple minimization of BLDC motors with un-ideal back EMF. IEEE transactions on power electronics, 23(2), 950-958. https://doi.org/10.1109/TPEL.2007.915667

Masmoudi, M., El Badsi, B., & Masmoudi, A. (2014). Direct torque control of brushless DC motor drives with improved reliability. IEEE Transactions on Industry Applications, 50(6), 3744-53. https://doi.org/10.1109/TIA.2014.2313700

Niapour, S. K., Tabarraie, M., & Feyzi, M. R. (2014). A new robust speed-sensorless control strategy for high-performance brushless DC motor drives with reduced torque ripple. Control Engineering Practice, 24, 42-54. https://doi.org/10.1016/j.conengprac.2013.11.014.

Nithin, K. S., Vivek, R. S., & Purushothaman, A. (2020, November). Commutation Torque Ripple Comparison in Cuk Converter Fed Brushless DC Motor Drives with Mode Switching Selection Circuit. In 2020 International Conference on Power Electronics and Renewable Energy Applications (PEREA) (pp. 1-6). IEEE. https://doi.org/10.1109/PEREA51218.2020.9339770

Park, J., & Lee, D. H. (2020). Simple commutation torque ripple reduction using PWM with compensation voltage. IEEE Transactions on Industry Applications, 56(3), 2654-2662. https://doi.org/10.1109/TIA.2020.2968412

Park, S. J., Park, H. W., Lee, M. H., & Harashima, F. (2000). A new approach for minimum-torque-ripple maximum-efficiency control of BLDC motor. IEEE Transactions on industrial electronics, 47(1), 109-114. https://doi.org/10.1109/41.824132

Patel, H., & Chandwani, H. (2021). Simulation and experimental verification of modified sinusoidal pulse width modulation technique for torque ripple attenuation in Brushless DC motor drive. Engineering Science and Technology, an International Journal, 24(3), 671-681. https://doi.org/10.1016/j.jestch.2020.11.003

Periasamy, M., & Umaya, C. (2018). Improved Time Responses of PI & FL Controlled SEPIC Converter based Series Resonant Inverter-fed Induction Heating System. International Journal of Power Electronics and Drive System (IJPEDS), 9(1), 305-315. https://doi.org/10.11591/ijpeds.v9.i1.pp305-315

Poorali, B., Adib, E., & Farzanehfard, H. (2017). Soft-switching DC–DC Cuk converter operating in discontinuous-capacitor-voltage mode. IET Power Electronics, 10(13), 1679-1686. https://doi.org/10.1049/iet-pel.2016.0513

Rajesh, P., Shajin, F. H., & Cherukupalli, K. (2021). An efficient hybrid tunicate swarm algorithm and radial basis function searching technique for maximum power point tracking in wind energy conversion system. Journal of Engineering, Design and Technology. Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/JEDT-12-2020-0494

Rajesh, P., Shajin, F. H., & VijayaAnand, N. (2021). An efficient estimation model for induction motor using BMO-RBFNN technique. Process Integration and Optimization for Sustainability, 5(4), 777-792. https://doi.org/10.1108/JEDT-12-2020-0494

Sadda, A., Keshri, J. P., Tiwari, H., & Jain, V. (2022). BLDC Motor Torque Ripple Minimization Technique by Using Isolated Type DC–DC Buck–Boost Converter. In Advances in Energy Technology (pp. 301-312). Springer, Singapore. https://doi.org/10.1007/978-981-16-1476-7_29

Senthilnathan, A., & Palanivel, P. (2020). A new approach for commutation torque ripple reduction of FPGA based brushless DC motor with outgoing phase current control. Microprocessors and Microsystems, 75, Article 103043. https://doi.org/10.1016/j.micpro.2020.103043

Seol, H. S., Kang, D. W., Jun, H. W., Lim, J., & Lee, J. (2017). Design of winding changeable BLDC motor considering demagnetization in winding change section. IEEE Transactions on Magnetics, 53(11), 1-5. https://doi.org/10.1109/TMAG.2017.2695890

Shajin, F. H., & Rajesh, P. (2022). FPGA realization of a reversible data hiding scheme for 5G MIMO OFDM system by chaotic key generation-based paillier cryptography along with LDPC and its side channel estimation using machine learning technique. Journal of Circuits, Systems and Computers, 31(05), 2250093. https://doi.org/10.1142/S0218126622500931

Shajin, F. H., Rajesh, P., & Raja, M. R. (2022). An efficient VLSI architecture for fast motion estimation exploiting zero motion prejudgment technique and a new quadrant-based search algorithm in HEVC. Circuits, Systems, and Signal Processing, 41(3), 1751-1774. https://doi.org/10.1007/s00034-021-01850-2

Sheng, T., Wang, X., Zhang, J., & Deng, Z. (2014). Torque-ripple mitigation for brushless DC machine drive system using one-cycle average torque control. IEEE Transactions on Industrial Electronics, 62(4), 2114-2122. https://doi.org/10.1109/TIE.2014.2351377

Shi, T., Cao, Y., Jiang G., Li, X., & Xia, C. (2017). A torque control strategy for torque ripple reduction of brushless DC motor with nonideal back electromotive force. IEEE Transactions on Industrial Electronics, 64(6), 4423-4433. https://doi.org/10.1109/TIE.2017.2674587

Shi, T., Guo, Y., Song, P., & Xia, C. (2009). A new approach of minimizing commutation torque ripple for brushless DC motor based on DC–DC converter. IEEE Transactions on industrial electronics, 57(10), 3483-3490. https://doi.org/10.1109/TIE.2009.2038335

Shi, T., Niu, X., Chen, W., & Xia, C. (2017). Commutation torque ripple reduction of brushless DC motor in braking operation. IEEE Transactions on Power Electronics, 33(2), 1463-1475. https://doi.org/10.1109/TPEL.2017.2675444

Singh, S., & Singh, B. (2012). A voltage-controlled PFC Cuk converter-based PMBLDCM drive for air conditioners. IEEE transactions on industry applications, 48(2), 832-838. https://doi.org/10.1109/TIA.2011.2182329

Transpire Online. (2020). A Novel Numerical Optimization Algorithm Inspired from Particles: Particle Swarm Optimization. Transpire Online, 2020. Retrieved from https://transpireonline.blog/2019/07/03/a-novel-numerical-optimization-algorithm-inspired-from particles-particle-swarm-optimization/

Zhu, C., Zeng, Z., & Zhao R. (2016). Comprehensive analysis and reduction of torque ripples in three-phase four-switch inverter-fed PMSM drives using space vector pulse-width modulation. IEEE transactions on power electronics, 32(7), 5411-5424. https://doi.org/10.1109/TPEL.2016.2605160




How to Cite

P. Rajesh, Francis H Shajin, V. Ansal, & Vijay Kumar B. (2023). Enhanced artificial transgender longicorn algorithm & recurrent neural network based enhanced DC-DC converter for torque ripple minimization of BLDC motor. Journal of Current Science and Technology, 13(2), 182–204. https://doi.org/10.59796/jcst.V13N2.2023.1735



Research Article