Electrospun Cellulose Acetate Nanofibers Containing Clinacanthus nutans (Phayayo) Crude Extract as Potential Wound Dressings
DOI:
https://doi.org/10.59796/jcst.V14N1.2024.7Keywords:
Cellulose acetate, Electrospinning, Herbal extract, Nanofibers, Phayayo, Wound dressingAbstract
Extraction of Clinacanthus nutans (Burm.f.) lindau (C. nutans) or Phayayo (PY) leaves was performed by maceration using ethanol as an extractant. The antioxidant activity was evaluated by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. The inhibitory concentration at 50% antioxidant activity (IC50) of PY extract was 15.62 mg/mL. The electrospun cellulose acetate (CA) nanofibers containing PY extract at concentrations of 2.5, 5, and 7.5% w/v and silver (Ag) nanoparticles at 0.1% w/v were fabricated. The addition of PY extract and Ag influenced the viscosities of solutions and therefore affected the morphology and fiber diameters. The electrospun CA fiber mat containing 0.1% Ag and 7.5% PY extract was chosen to investigate its potential for use in wound dressing applications. The degrees of weight loss and water swelling of the electrospun CA/PY7.5/Ag fiber mat after immersion in a phosphate buffer solution (pH 7.4) at 37°C were examined in a range of 2-24 h, and found to increase with immersion time. The antioxidant activity of the fiber mat at the same period of immersion time was also studied, which corresponded with the trends of weight loss and water swelling. The antioxidant activity at 24 h of immersion was 68.3±9.2%. The CA/PY7.5/Ag fiber mat had no antibacterial activity against Escherichia coli but slightly inhibited the growth of Staphylococcus aureus. The fiber mat also possesses high hydrophilicity, as examined by the contact angle measurement. These results indicate that the CA/PY7.5/Ag fiber mat is a promising material for use as a topical transdermal patch or wound dressing.
References
Abdullah, N., & Kasim, K. (2017). In-vitro antidiabetic activity of Clinacanthus nutans extracts. International Journal of Pharmacognosy and Phytochemical Research, 9(6), 846-852. https://doi.org/10.25258/phyto.v9i6.8189
Alam, A., Ferdosh, S., Ghafoor, K., Hakim, A., Juraimi, A. S., Khatib, A., & Sarker, Z. I. (2016). Clinacanthus nutans: A review of the medicinal uses, pharmacology and phytochemistry. Asian Pacific journal of tropical medicine, 9(4), 402-409. https://doi.org/10.1016/j.apjtm.2016.03.011
Alam, M. A., Zaidul, I. S. M., Ghafoor, K., Sahena, F., Hakim, M. A., Rafii, M. Y., ... & Khatib, A. (2017). In vitro antioxidant and, α-glucosidase inhibitory activities and comprehensive metabolite profiling of methanol extract and its fractions from Clinacanthus nutans. BMC complementary and alternative medicine, 17(1), 1-10. https://doi.org/10.1186/s12906-017-1684-5
Alven, S., Buyana, B., Feketshane, Z., & Aderibigbe, B. A. (2021). Electrospun nanofibers/nanofibrous scaffolds loaded with silver nanoparticles as effective antibacterial wound dressing materials. Pharmaceutics, 13(7), Article 964. https://doi.org/10.3390/pharmaceutics13070964
Arullappan, S., Rajamanickam, P., Thevar, N., & Kodimani, C. C. (2014). In vitro screening of cytotoxic, antimicrobial and antioxidant activities of Clinacanthus nutans (Acanthaceae) leaf extracts. Tropical Journal of Pharmaceutical Research, 13(9), 1455-1461. https://doi.org/10.4314/tjpr.v13i9.11
Atila, D., Hasirci, V., & Tezcaner, A. (2022). Coaxial electrospinning of composite mats comprised of core/shell poly (methyl methacrylate)/silk fibroin fibers for tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials, 128, Article 105105. https://doi.org/10.1016/j.jmbbm.2022.105105
Castillo-Ortega, M. M., Nájera-Luna, A., Rodríguez-Félix, D. E., Encinas, J. C., Rodríguez-Félix, F., Romero, J., & Herrera-Franco, P. J. (2011). Preparation, characterization and release of amoxicillin from cellulose acetate and poly (vinyl pyrrolidone) coaxial electrospun fibrous membranes. Materials Science and Engineering: C, 31(8), 1772-1778. https://doi.org/10.1016/j.msec.2011.08.009
Chen, K., Pan, H., Ji, D., Li, Y., Duan, H., & Pan, W. (2021). Curcumin-loaded sandwich-like nanofibrous membrane prepared by electrospinning technology as wound dressing for accelerate wound healing. Materials Science and Engineering: C, 127, Article 112245. https://doi.org/10.1016/j.msec.2021.112245
Chew, S. Y., Wen, J., Yim, E. K., & Leong, K. W. (2005). Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules, 6(4), 2017-2024. https://doi.org/10.1021/bm0501149
Cortes, H., Caballero-Florán, I. H., Mendoza-Muñoz, N., Escutia-Guadarrama, L., Figueroa-González, G., Reyes-Hernández, O. D., ... & Leyva-Gómez, G. (2020). Xanthan gum in drug release. Cellular and Molecular Biology, 66(4), 199-207. https://doi.org/10.14715/cmb/2020.66.4.24
Cui, Z., Zheng, Z., Lin, L., Si, J., Wang, Q., Peng, X., & Chen, W. (2018). Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Advances in Polymer Technology, 37(6), 1917-1928. https://doi.org/10.1002/adv.21850
Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of electrostatics, 35(2-3), 151-160. https://doi.org/10.1016/0304-3886(95)00041-8
Eghbalifam, N., Shojaosadati, S. A., Hashemi-Najafabadi, S., & Khorasani, A. C. (2020). Synthesis and characterization of antimicrobial wound dressing material based on silver nanoparticles loaded gum Arabic nanofibers. International journal of biological macromolecules, 155, 119-130. https://doi.org/10.1016/j.ijbiomac.2020.03.194
Haetrakul, T., Dunbar, S., & Chansue, N. (2018). Antiviral activities of Clinacanthus nutans (Burm. f.) Lindau extract against Cyprinid herpesvirus 3 in koi (Cyprinus carpio koi). Journal of fish diseases, 41(4), 581-587. https://doi.org/10.1111/jfd.12757
He, C., Yu, B., Lv, Y., Huang, Y., Guo, J., Li, L., ... & Yang, J. (2022). Biomimetic asymmetric composite dressing by electrospinning with aligned nanofibrous and micropatterned structures for severe burn wound healing. ACS Applied Materials & Interfaces, 14(29), 32799-32812. https://doi.org/10.1021/acsami.2c04323
Kuo, X., Herr, D. R., & Ong, W.-Y. (2021). Anti-inflammatory and cytoprotective effect of Clinacanthus nutans leaf but not stem extracts on 7-ketocholesterol induced brain endothelial cell injury. Neuromolecular medicine, 23, 176-183. https://doi.org/10.1007/s12017-020-08621-3
Lamoudi, L., Chaumeil, J. C., & Daoud, K. (2016). Swelling, erosion and drug release characteristics of Sodium Diclofenac from heterogeneous matrix tablets. Journal of Drug Delivery Science and Technology, 31, 93-100. https://doi.org/10.1016/j.jddst.2015.12.005
Liu, H., & Hsieh, Y. L. (2002). Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. Journal of Polymer Science Part B: Polymer Physics, 40(18), 2119-2129. https://doi.org/10.1002/polb.10261
Liu, X., Yang, Y., Yu, D.-G., Zhu, M.-J., Zhao, M., & Williams, G. R. (2019). Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chemical Engineering Journal, 356, 886-894. https://doi.org/10.1016/j.cej.2018.09.096
Mit‐uppatham, C., Nithitanakul, M., & Supaphol, P. (2004). Ultrafine electrospun polyamide‐6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromolecular Chemistry and Physics, 205(17), 2327-2338. https://doi.org/10.1002/macp.200400225
Mosquera, O. M., Correa, Y. M., Buitrago, D. C., & Niño, J. (2007). Antioxidant activity of twenty five plants from Colombian biodiversity. Memorias do Instituto Oswaldo Cruz, 102, 631-634. https://doi.org/10.1590/S0074-02762007005000066
Neamsuvan, O., Kama, A., Salaemae, A., Leesen, S., & Waedueramae, N. (2015). A survey of herbal formulas for skin diseases from Thailand’s three southern border provinces. Journal of Herbal Medicine, 5(4), 190-198. https://doi.org/10.1016/j.hermed.2015.09.004
Okutan, N., Terzi, P., & Altay, F. (2014). Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids, 39, 19-26. https://doi.org/10.1016/j.foodhyd.2013.12.022
Purnamasari, W., Budiastanti, T. A., Aminatun, A., Rahmah, U., Sumarsih, S., Chang, J. Y., & Fahmi, M. Z. (2022). Naproxen release behaviour from graphene oxide/cellulose acetate composite nanofibers. RSC advances, 12(13), 8019-8029. https://doi.org/10.1039/D1RA09293F
Reneker, D. H., & Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49(10), 2387-2425. https://doi.org/10.1016/j.polymer.2008.02.002
Rezvani Ghomi, E., Khalili, S., Nouri Khorasani, S., Esmaeely Neisiany, R., & Ramakrishna, S. (2019). Wound dressings: Current advances and future directions. Journal of Applied Polymer Science, 136(27), Article 47738. https://doi.org/10.1002/app.47738
Roeslan, M. O., Ayudhya, T. D. N., Yingyongnarongkul, B.-e., & Koontongkaew, S. (2019). Anti-biofilm, nitric oxide inhibition and wound healing potential of purpurin-18 phytyl ester isolated from Clinacanthus nutans leaves. Biomedicine & Pharmacotherapy, 113, Article 108724. https://doi.org/10.1016/j.biopha.2019.108724
Sekar, M., & Rashid, N. A. (2016). Formulation, evaluation and antibacterial properties of herbal ointment containing methanolic extract of Clinacanthus nutans leaves. International Journal of Pharmaceutical and Clinical Research, 8(8), 1170-1174.
Sriyanti, I., Marlina, L., Fudholi, A., Marsela, S., & Jauhari, J. (2021). Physicochemical properties and In vitro evaluation studies of polyvinylpyrrolidone/cellulose acetate composite nanofibres loaded with Chromolaena odorata (L) King extract. Journal of Materials Research and Technology, 12, 333-342. https://doi.org/10.1016/j.jmrt.2021.02.083
Sutananta, W., Craig, D. Q., & Newton, J. M. (1995). An evaluation of the mechanisms of drug release from glyceride bases. Journal of pharmacy and pharmacology, 47(3), 182-187. https://doi.org/10.1111/j.2042-7158.1995.tb05775.x
Suwantong, O., Opanasopit, P., Ruktanonchai, U., & Supaphol, P. (2007). Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer, 48(26), 7546-7557. https://doi.org/10.1016/j.polymer.2007.11.019
Suwantong, O., Ruktanonchai, U., & Supaphol, P. (2008). Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside. Polymer, 49(19), 4239-4247. https://doi.org/10.1016/j.polymer.2008.07.020
Thairin, T., & Wutticharoenmongkol, P. (2022). Ciprofloxacin-loaded alginate/poly (vinyl alcohol)/gelatin electrospun nanofiber mats as antibacterial wound dressings. Journal of Industrial Textiles, 51(1_suppl), 1296S-1322S. https://doi.org/10.1177/1528083721997466
Tsekova, P. B., Spasova, M. G., Manolova, N. E., Markova, N. D., & Rashkov, I. B. (2017). Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Materials Science and Engineering: C, 73, 206-214. https://doi.org/10.1016/j.msec.2016.12.086
Wanikiat, P., Panthong, A., Sujayanon, P., Yoosook, C., Rossi, A. G., & Reutrakul, V. (2008). The anti-inflammatory effects and the inhibition of neutrophil responsiveness by Barleria lupulina and Clinacanthus nutans extracts. Journal of ethnopharmacology, 116(2), 234-244. https://doi.org/10.1016/j.jep.2007.11.035
Wutticharoenmongkol, P., Hannirojram, P., & Nuthong, P. (2019). Gallic acid‐loaded electrospun cellulose acetate nanofibers as potential wound dressing materials. Polymers for Advanced Technologies, 30(4), 1135-1147. https://doi.org/10.1002/pat.4547
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Journal of Current Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.