Effects of Stearic Acid and Zein Incorporation on Refined Kappa Carrageenan-Based Composite Edible Film Properties

Authors

  • Danar Praseptiangga Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret (UNS), Surakarta 57126, Indonesia; Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Jatinangor 45363, Indonesia
  • Beta Afrida Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret (UNS), Surakarta 57126, Indonesia
  • Nuha Mufida Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret (UNS), Surakarta 57126, Indonesia
  • Dea Widyaastuti Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret (UNS), Surakarta 57126, Indonesia

DOI:

https://doi.org/10.59796/jcst.V13N3.2023.1324

Keywords:

carrageenan, biopolymer, edible film, fatty acid, physico-mechanical properties, stearic acid, zein

Abstract

Incorporating hydrophobic materials into a polysaccharide-based film to form a composite edible film has been considered an effective way to strengthen the film properties, especially the water vapor resistance. Fatty acids, such as stearic acid, with long-chain and straight structures, exhibit strong hydrophobic performance to prevent water vapor diffusion through the film surface. Meanwhile, zein has been revealed as an encouraging material due to its compactness, less allergic, and gas barrier properties. The investigation of kappa-carrageenan/zein/stearic acid-based green composite edible film has been limited. Thus, this study aims to examine the effect of increasing stearic acid and zein concentrations on improving the moisture barrier and mechanical properties of kappa carrageenan-based composite edible film. Different concentrations of stearic acid (5, 10, and 15% w/w carrageenan) and zein (2.5, 5, and 7.5% w/w carrageenan) were applied to the composite edible film prepared using the solution casting method. The fabricated films have a thickness of 0.092–0.122 mm. The results indicated that increasing the concentration of stearic acid enhances the water vapor barrier and tensile strength of the edible film (p < 0.05). However, the increased zein concentration slightly weakened the water vapor barrier properties. Then, the elongation of the manufactured films was quite improved by the increment of stearic acid proportion, but neither by the increment of zein proportion nor the combination of these two substances. However, the incorporation of stearic acid and zein into refined-kappa carrageenan-based film remarkably improved the tensile strength, elongation, and water vapor barrier properties by 12–18%, 23–27%, and 43–44%, respectively, in comparison to the neat film. Based on the analysis result, the manufactured film which consists of 10% stearic acid and 2.5% zein is considered as the best film formula. This study, therefore, revealed the potentiality of stearic acid enforcement in food packaging applications.

References

Agarwal, S. (2021). Major factors affecting the characteristics of starch based biopolymer films. European Polymer Journal, 160, Article 110788. https://doi.org/10.1016/j.eurpolymj.2021.110788

Aliheidari, N., Fazaeli, M., Ahmadi, R., Ghasemlou, M., & Emam-Djomeh, Z. (2013). Comparative evaluation on fatty acid and Matricaria recutita essential oil incorporated into casein-based film. International Journal of Biological Macromolecules, 56, 69–75. https://doi.org/10.1016/j.ijbiomac.2013.02.007

Amini, A. M., & Razavi, S. M. A. (2020). Physicochemical characterisation of Salvia macrosiphon gum based edible films incorporated with various fatty acids. International Journal of Biological Macromolecules, 162, 1494–1499. https://doi.org/10.1016/j.ijbiomac.2020.08.034

Amini, A. M., Razavi, S. M. A., & Zahedi, Y. (2015). The influence of different plasticisers and fatty acids on functional properties of basil seed gum edible film. International Journal of Food Science and Technology, 50(5), 1137–1143. https://doi.org/10.1111/ijfs.12765

Arham, R., Mulyati, M. T., Metusalach, M., & Salengke, S. (2016). Physical and Mechanical Properties of Agar Based Edible Film with Glycerol Plasticizer. International Food Research Journal, 23(4), 1669–1675.

ASTM. (1989). Standard Test Method for Tensile Properties of Thin Plastic Sheeting 1 D 882-02, ASTM International. Astm International-14. US: ASTM International.

ASTM. (2002). Standard Test Method for Tensile Properties of Thin Plastic Sheeting, ASTM International. Astm International, 14(C), 1–12. https://doi.org/10.1520/D0882-09

Bagheri, F., Radi, M., & Amiri, S. (2019). Drying conditions highly influence the characteristics of glycerol-plasticized alginate films. Food Hydrocolloids, 90, 162–171. https://doi.org/10.1016/j.foodhyd.2018.12.001

Balqis, A. I., Khaizura, M. N., Russly, A. R., & Hanani, Z. N. (2017). Effects of plasticizers on the physicochemical properties of kappa-carrageenan films extracted from Eucheuma cottonii. International Journal of Biological Macromolecules, 103, 721–732. https://doi.org/10.1016/j.ijbiomac.2017.05.105

Bealer, E. J., Onissema-Karimu, S., Rivera-Galletti, A., Francis, M., Wilkowski, J., Salas-de la Cruz, D., & Hu, X. (2020). Protein–Polysaccharide Composite Materials: Fabrication and Applications. Polymers, 12(2), Article 464. https://doi.org/10.3390/polym12020464

Chen, H., Wu, C., Feng, X., He, M., Zhu, X., Li, Y., & Teng, F. (2022). Effects of two fatty acids on soy protein isolate/sodium alginate edible films: Structures and properties. LWT - Food Science and Technology, 159, Article 113221. https://doi.org/10.1016/j.lwt.2022.113221

Cheng, C. J., & Jones, O. G. (2019). Effect of drying temperature and extent of particle dispersion on composite films of methylcellulose and zein nanoparticles. Journal of Food Engineering, 250, 26–32. https://doi.org/10.1016/j.jfoodeng.2019.01.012

Cheng, C., Chen, S., Su, J., Zhu, M., Zhou, M., Chen, T., & Han, Y. (2022). Recent advances in carrageenan-based films for food packaging applications. Frontiers in Nutrition, 9(7), Article 1004588. https://doi.org/10.3389/fnut.2022.1004588

Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I., Buontempo, R. C., Bilck, A. P., & Innocentini Mei, L. H. (2018). The effect of fatty acids on the physicochemical properties of edible films composed of gelatin and gluten proteins. LWT, 87, 293–300. https://doi.org/10.1016/j.lwt.2017.08.056

Fu, M., Cao, M., Duan, J., Zhou, Q., Dong, M., Zhang, T., Liu, X., & Duan, X. (2022). Research on the Properties of Zein, Soy Protein Isolate, and Wheat Gluten Protein-Based Films Containing Cellulose Nanocrystals. Foods, 11(19), Article 3010. https://doi.org/10.3390/foods11193010

Gontard, N., Guilbert, S., & Cuq, J. (1992). Edible Wheat Gluten Films : Influence of the Main Process Variables on Film Properties using Response Surface Methodology. Journal of Food Science, 57(1), 190–199. https://doi.org/10.1111/j.1365-2621.1992.tb05453.x

Hanani, Z. N. (2017). Physicochemical characterization of kappa-carrageenan (Euchema cottoni) based films incorporated with various plant oils. Carbohydrate Polymers, 157, 1479–1487. https://doi.org/10.1016/j.carbpol.2016.11.026

Hashemi Gahruie, H., Mostaghimi, M., Ghiasi, F., Tavakoli, S., Naseri, M., & Hosseini, S. M. H. (2020). The effects of fatty acids chain length on the techno-functional properties of basil seed gum-based edible films. International Journal of Biological Macromolecules, 160, 245–251. https://doi.org/10.1016/j.ijbiomac.2020.05.136

Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., & Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097

He, F., Kong, Q., Jin, Z., & Mou, H. (2020). Developing a unidirectionally permeable edible film based on ĸ-carrageenan and gelatin for visually detecting the freshness of grass carp fillets. Carbohydrate Polymers, 241, Article 116336. https://doi.org/10.1016/j.carbpol.2020.116336

Jancikova, S., Dordevic, D., Jamroz, E., Behalova, H., & Tremlova, B. (2020). Chemical and physical characteristics of edible films, based on κ- and ι-carrageenans with the addition of lapacho tea extract. Foods, 9(3), Article 357. https://doi.org/10.3390/foods9030357

Liu, P., Gao, W., Zhang, X., Wang, B., Zou, F., Yu, B., ... & Cui, B. (2021). Effects of ultrasonication on the properties of maize starch/stearic acid/ sodium carboxymethyl cellulose composite film. Ultrasonics Sonochemistry, 72, Article 105447. https://doi.org/10.1016/j.ultsonch.2020.105447

Luís, Â., Domingues, F., & Ramos, A. (2019). Production of Hydrophobic Zein-Based Films Bioinspired by The Lotus Leaf Surface: Characterization and Bioactive Properties. Microorganisms, 7(8), Article 267. https://doi.org/10.3390/microorganisms7080267

Manuhara, G. J., Praseptiangga, D., Muhammad, D. R. A., & Maimuni, B. H. (2016a). Preparation and characterization of semi-refined kappa carrageenan-based edible film for nano coating application on minimally processed food. 6th Nanoscience and Nanotechnology Symposium (NNS2015), AIP Conference Proceedings, 1710(1), 030043. https://doi.org/10.1063/1.4941509

Manuhara, G. J., Praseptiangga, D., & Riyanto, R. A. (2016b). Extraction and Characterization of Refined K-carrageenan of Red Algae [Kappaphycus Alvarezii (Doty ex P.C. Silva, 1996)] Originated from Karimun Jawa Islands. Aquatic Procedia, 7, 106–111. https://doi.org/10.1016/j.aqpro.2016.07.014

Mohamed, S. A. A., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020). Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydrate Polymers, 238, Article 116178. https://doi.org/10.1016/j.carbpol.2020.116178

Praseptiangga, D., Afrida, B., & Mufida, N. (2021a). Mechanical and barrier properties of refined kappa carrageenan-based edible film incorporating palmitic acid and zein. Asia-Pacific Journal of Science and Technology, 27(4), 1–8.

Praseptiangga, D., Fatmala, N., Manuhara, G. J., Utami, R., & Khasanah, L. U. (2016). Preparation and preliminary characterization of semi refined kappa carrageenan-based edible film incorporated with cinnamon essential oil. The 2016 Conference on Fundamental and Applied Science for Advanced Technology (CONFAST 2016), AIP Conference Proceedings, 1746, 020036. https://doi.org/10.1063/1.4953961

Praseptiangga, D., Ferichani, I. P., & Mufida, N. (2022). Development and Characterization of Bioactive Edible Films Based on Semi-Refined Kappa Carrageenan Incorporated with Honey and Kaempferia galanga L. Essential Oil. Trends in Sciences, 19(17), Article 5761. https://doi.org/10.48048/tis.2022.5761

Praseptiangga, D., Giovani, S., Manuhara, G. J., & Muhammad, D. R. A. (2017). Formulation and characterization of novel composite semi-refined iota carrageenan-based edible film incorporating palmitic acid. The 2nd International Conference on Energy Engineering and Smart Materials (ICEESM 2017), AIP Conference Proceedings, 1884, 030006. https://doi.org/10.1063/1.5002516

Praseptiangga, D., Maimuni, B. H., Manuhara, G. J., & Muhammad, D. R. A. (2018). Mechanical and Barrier Properties of Semi Refined Kappa Carrageenan-based Composite Edible Film and Its Application on Minimally Processed Chicken Breast Fillet. International Conference on Advanced Materials for Better Future, IOP Conference Series: Materials Science and Engineering, 333(1), 012086. https://doi.org/10.1088/1757-899X/333/1/012086

Praseptiangga, D., Mufida, N., Panatarani, C., & Joni, I. M. (2021b). Enhanced multi functionality of semi-refined iota carrageenan as food packaging material by incorporating SiO2 and ZnO nanoparticles. Heliyon, 7(5), Article e06963. https://doi.org/10.1016/j.heliyon.2021.e06963

Praseptiangga, D., Rahmawati, A., Manuhara, G. J., Khasanah, L. U., & Utami, R. (2021c). Effects of Plasticizer and Cinnamon Essential Oil Incorporation on Mechanical and Water Barrier Properties of Semirefined Iota-Carrageenan-based Edible Film. 3rd International Conference on Food Science and Engineering, IOP Conference Series: Earth and Environmental Science, 828(1), 012034. https://doi.org/10.1088/1755-1315/828/1/012034

Roy, S., & Rhim, J. (2019). Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocolloids, 90, 500–507. https://doi.org/10.1016/j.foodhyd.2018.12.056

Sanchez-Garcia, M. D., Hilliou, L., & Lagaron, J. M. (2010). Nanobiocomposites of Carrageenan, Zein, and Mica of Interest in Food Packaging and Coating Applications. Journal of Agricultural and Food Chemistry, 58(11), 6884–6894. https://doi.org/10.1021/jf1007659

Sánchez-Ortega, I., García-Almendárez, B. E., Santos-López, E. M., Amaro-Reyes, A., Barboza-Corona, J. E., & Regalado, C. (2014). Antimicrobial Edible Films and Coatings for Meat and Meat Products Preservation. The Scientific World Journal, 2014, 1–18. https://doi.org/10.1155/2014/248935

Schmidt, V. C. R., Porto, L. M., Laurindo, J. B., & Menegalli, F. C. (2013). Water vapor barrier and mechanical properties of starch films containing stearic acid. Industrial Crops and Products, 41(1), 227–234. https://doi.org/10.1016/j.indcrop.2012.04.038

Sedayu, B. B., Cran, M. J., & Bigger, S. W. (2019). A Review of Property Enhancement Techniques for Carrageenan-based Films and Coatings. Carbohydrate Polymers, 216, 287–302. https://doi.org/10.1016/j.carbpol.2019.04.021

Seyedi, S., Koocheki, A., Mohebbi, M., & Zahedi, Y. (2015). Improving the physical and moisture barrier properties of Lepidium perfoliatum seed gum biodegradable film with stearic and palmitic acids. International Journal of Biological Macromolecules, 77, 151–158. https://doi.org/10.1016/j.ijbiomac.2015.03.005

Sullivan, W. G., Wicks, E. M., & Koelling, C. P. (2015). Engineering Economy (16th ed.). New York: Pearson.

Tadele, D. T., Shorey, R., & Mekonnen, T. H. (2023). Fatty acid modified zein films: Effect of fatty acid chain length on the processability and thermomechanical properties of modified zein films. Industrial Crops and Products, 192, Article 116028. https://doi.org/10.1016/j.indcrop.2022.116028

Teklehaimanot, W. H., Ray, S. S., & Emmambux, M. N. (2020). Characterization of pre-gelatinized maize starch-zein blend films produced at alkaline pH. Journal of Cereal Science, 95, Article 103083. https://doi.org/10.1016/j.jcs.2020.103083

Thakur, R., Pristijono, P., Golding, J. B., Stathopoulos, C. E., Scarlett, C. J., Bowyer, M., ... & Vuong, Q. V. (2017). Amylose-lipid complex as a measure of variations in physical, mechanical and barrier attributes of rice starch- ι -carrageenan biodegradable edible film. Food Packaging and Shelf Life, 14, 108–115. https://doi.org/10.1016/j.fpsl.2017.10.002

Thakur, R., Saberi, B., Pristijono, P., Golding, J., Stathopoulos, C., Scarlett, C., ... & Vuong, Q. (2016). Characterization of rice starch-ι-carrageenan biodegradable edible film. Effect of stearic acid on the film properties. International Journal of Biological Macromolecules, 93, 952–960. https://doi.org/10.1016/j.ijbiomac.2016.09.053

Wang, K., Wu, K., Xiao, M., Kuang, Y., Corke, H., Ni, X., & Jiang, F. (2017). Structural characterization and properties of konjac glucomannan and zein blend films. International Journal of Biological Macromolecules, 105, 1096–1104. https://doi.org/10.1016/j.ijbiomac.2017.07.127

Yokesahachart, C., & Pajareon, S. (2020). Comparative study of physico-mechanical properties, thermal stability and water absorption of biodegradable films prepared from commercial oxidized and cross-linked cassava starches. Journal of Current Science and Technology, 10(2), 121–129. https://doi.org/10.14456/jcst.2020.12

Zuo, G., Song, X., Chen, F., & Shen, Z. (2019). Physical and structural characterization of edible bilayer films made with zein and corn-wheat starch. Journal of the Saudi Society of Agricultural Sciences, 18(3), 324–331. https://doi.org/10.1016/j.jssas.2017.09.005

Downloads

Published

2023-08-30

How to Cite

Praseptiangga, D., Afrida, B., Mufida, N., & Widyaastuti, D. (2023). Effects of Stearic Acid and Zein Incorporation on Refined Kappa Carrageenan-Based Composite Edible Film Properties. Journal of Current Science and Technology, 13(3), 762–773. https://doi.org/10.59796/jcst.V13N3.2023.1324

Issue

Section

Research Article

Categories