Review of The Application of Digital Transformation in Food Industry
DOI:
https://doi.org/10.59796/jcst.V13N3.2023.1285Keywords:
Artificial intelligence, block chain, food industry, machine learning, internet of thingsAbstract
In recent years, food companies have been facing various challenges related to fluctuating demand and constantly evolving customer and supplier requirements. These challenges have made it necessary for food companies to adapt to new technological advancements and implement new solutions to optimize their manufacturing systems. One such solution is digital transformation, which is a suite of technologies aimed at creating smart ecosystems that can transform industrial processes. Digital transformations are designed to exploit the potential of rapidly advancing information and communication technology (ICT) in the food industry. These include digital tools such as machine learning, artificial intelligence, blockchain, and IoT or the Internet of Things. These technologies have several applications in the food industry, ranging from food supply chain management to food safety, production, and consumption.
References
Ahani, A., Nilashi, M., Ibrahim, O., Sanzogni, L., & Weaven, S. (2019). Market segmentation and travel choice prediction in Spa hotels through TripAdvisor’s online reviews. International Journal of Hospitality Management, 80, 52–77. https://doi.org/10.1016/j.ijhm.2019.01.003
Ali, I., Arslan, A., Khan, Z., & Tarba, S. Y. (2021). The role of industry 4.0 technologies in mitigating supply chain disruption: Empirical evidence from the Australian food processing industry. IEEE Transactions on engineering management, 1-10. https://doi.org/10.1109/TEM.2021.3088518
Amenaghawon, A. N., Evbarunegbe, N. I., & Obahiagbon, K. (2021). Optimum biodiesel production from waste vegetable oil using functionalized cow horn catalyst: a comparative evaluation of some expert systems. Cleaner Engineering and Technology, 4, Article 100184. https://doi.org/10.1016/j.clet.2021.100184
Ammar, M., Haleem, A., Javaid, M., Bahl, S., & Nandan, D. (2022). Improving the performance of supply chain through industry 4.0 technologies [Conference presentation]. Advancement in Materials, Manufacturing and Energy Engineering, Vol. II: Select Proceedings of ICAMME 2021. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8341-1_16
Andersen, E., Johnson, J. C., Kolbjørnsrud, V., & Sannes, R. (2018). Chapter 2: The data-driven organization: Intelligence at SCALE. In At the Forefront, Looking Ahead: Research-Based Answers to Contemporary Uncertainties of Management (pp. 23-42). Oslo: Universitetsforlaget. https://doi.org/10.18261/9788215031583-2018-03
Apolo-Apolo, O. E., Martínez-Guanter, J., Egea, G., Raja, P., & Pérez-Ruiz, M. (2020). Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV. European Journal of Agronomy, 115, Article 126030. https://doi.org/10.1016/j.eja.2020.126030
Appio, F. P., Frattini, F., Petruzzelli, A. M., & Neirotti, P. (2021). Digital transformation and innovation management: A synthesis of existing research and an agenda for future studies. Journal of Product Innovation Management, 38(1), 4-20. https://doi.org/10.1111/jpim.12562
Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE computational intelligence magazine, 5(4), 13-18. https://doi.org/10.1109/MCI.2010.938364
Asif, M., Searcy, C., & Castka, P. (2022). Exploring the role of industry 4.0 in enhancing supplier audit authenticity, efficacy, and cost effectiveness. Journal of Cleaner Production, 331, Article 129939. https://doi.org/10.1016/j.jclepro.2021.129939
Astiningrum, M., Wijayaningrum, V. N., & Putri, I. K. (2021). Forecasting Model of Staple Food Prices Using Support Vector Regression with Optimized Parameters. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 7(3), 441-452. http://dx.doi.org/10.26555/jiteki.v7i3.22010
Bankins, S., & Formosa, P. (2023). The ethical implications of artificial intelligence (AI) for meaningful work. Journal of Business Ethics, 185, 725-740. https://doi.org/10.1007/s10551-023-05339-7
Barandun, G., Soprani, M., Naficy, S., Grell, M., Kasimatis, M., Chiu, K. L., ... & Güder, F. (2019). Cellulose fibers enable near-zero-cost electrical sensing of water-soluble gases. ACS sensors, 4(6), 1662-1669. https://doi.org/10.1021/acssensors.9b00555
Basheer, I. A., & Hajmeer, M. (2000). Microbiological Methods. Journal of Microbiological Methods, 43(1), 3-31. http://dx.doi.org/10.1016/S0167-7012(00)00201-3
Bayraktar, O., & Ataç, C. (2018). The effects of Industry 4.0 on Human resources management. Globalization, Institutions and Socio-Economic Performance. Globalization, Institutions and Socio-Economic Performance (pp.337-359). Lausanna: Peter Lang.
Beker, I., Delić, M., Milisavljević, S., Gošnik, D., Ostojić, G., & Stankovski, S. (2016). Can IoT be used to mitigate food supply chain risk?. International Journal of Industrial Engineering and Management, 7(1), 43-48. https://doi.org/10.24867/IJIEM-2016-1-106
Ben-Daya, M., Hassini, E., Bahroun, Z., & Banimfreg, B. H. (2020). The role of internet of things in food supply chain quality management: A review. Quality management journal, 28(1), 17-40. https://doi.org/10.1080/10686967.2020.1838978
Bersani, C., Ruggiero, C., Sacile, R., Soussi, A., & Zero, E. (2022). Internet of Things Approaches for Monitoring and Control of Smart Greenhouses in Industry 4.0. Energies, 15(10), Article 3834. https://doi.org/10.3390/en15103834
Bhat S, M., Prabhakar, A., Rao R, R. K., GM, M., & G. H, R. (2010). Statistical optimization and neural modeling of amylase production from banana peel using Bacillus subtilis MTCC 441. International Journal of Food Engineering, 6(4). https://doi.org/10.2202/1556-3758.1980
Bhatia, M., & Ahanger, T. A. (2021). Intelligent decision-making in smart food industry: quality perspective. Pervasive and Mobile Computing, 72, Article 101304. https://doi.org/10.1016/j.pmcj.2020.101304
Bi, Z., Da Xu, L., & Wang, C. (2014). Internet of things for enterprise systems of modern manufacturing. IEEE Transactions on industrial informatics, 10(2), 1537-1546. https://doi.org/10.1109/TII.2014.2300338
Bunge, J. (2017). Latest use for a bitcoin technology: Tracing turkeys from farm to table. The Wall Street Journal. Retrieved January 15, 2023, from https://www.wsj.com/articles/latest-use-for-a-bitcoin-technology-tracing-turkeys-from-farm-to-table-1508923801
Chen, M., Tian, Y., Fortino, G., Zhang, J., & Humar, I. (2018). Cognitive internet of vehicles. Computer Communications, 120, 58-70. https://doi.org/10.1016/j.comcom.2018.02.006
Chen, R. Y. (2015). Autonomous tracing system for backward design in food supply chain. Food control, 51, 70-84. https://doi.org/10.1016/j.foodcont.2014.11.004
Chiu, Y. C., Cheng, F. T., & Huang, H. C. (2017). Developing a factory-wide intelligent predictive maintenance system based on Industry 4.0. Journal of the Chinese Institute of Engineers, 40(7), 562-571. https://doi.org/10.1080/02533839.2017.1362357
Creydt, M., & Fischer, M. (2019). Blockchain and more-Algorithm driven food traceability. Food Control, 105, 45-51. https://doi.org/10.1016/j.foodcont.2019.05.019
Das, A., Shukla, A., Manjunatha, R., & Lodhi, E. A. (2021, February 4-6). IoT based solid waste segregation using relative humidity values [Conference presentation]. 2021 3rd international conference on intelligent communication technologies and virtual mobile networks (ICICV). Tirunelveli, India. https://doi.org/10.1109/ICICV50876.2021.9388611
de Medeiros Esper, I., From, P. J., & Mason, A. (2021). Robotisation and intelligent systems in abattoirs. Trends in Food Science & Technology, 108, 214-222. https://doi.org/10.1016/j.tifs.2020.11.005.
De Pilli, T. (2022). Application of fuzzy logic system for the pizza production processing optimisation. Journal of Food Engineering, 319, Article 110906. https://doi.org/10.1016/j.jfoodeng.2021.110906
Demartini, M., Pinna, C., Tonelli, F., Terzi, S., Sansone, C., & Testa, C. (2018). Food industry digitalization: from challenges and trends to opportunities and solutions. IFAC-PapersOnLine, 51(11), 1371-1378. https://doi.org/10.1016/j.ifacol.2018.08.337
Du, C. J., & Sun, D. W. (2004). Recent developments in the applications of image processing techniques for food quality evaluation. Trends in food science & technology, 15(5), 230-249. https://doi.org/10.1016/j.tifs.2003.10.006
Duong, L. N., Al-Fadhli, M., Jagtap, S., Bader, F., Martindale, W., Swainson, M., & Paoli, A. (2020). A review of robotics and autonomous systems in the food industry: From the supply chains perspective. Trends in Food Science & Technology, 106, 355-364. https://doi.org/10.1016/j.tifs.2020.10.028
Fernando, Y., Wahyuni-TD, I. S., Gui, A., Ikhsan, R. B., Mergeresa, F., & Ganesan, Y. (2022). A mixed-method study on the barriers of industry 4.0 adoption in the Indonesian SMEs manufacturing supply chains. Journal of Science and Technology Policy Management, 14(4), 678-695. https://doi.org/10.1108/JSTPM-10-2021-0155
Galanakis, C. M. (2021). Food Technology Disruption. Massachusetts: Academic Press.
Galvez, J. F., Mejuto, J. C., & Simal-Gandara, J. (2018). Future challenges on the use of blockchain for food traceability analysis. TrAC Trends in Analytical Chemistry, 107, 222-232. https://doi.org/10.1016/j.trac.2018.08.011
Goel, R., & Gupta, P. (2020). Robotics and industry 4.0. A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development (pp. 157-169). Springer Cham. https://doi.org/10.1007/978-3-030-14544-6
Gorny, C., & Wedel, F. H. (2022). Strategic Data Acquisition–a literature review. Seminar IT-Management in the Digital Age. Germany: FH Wedel.
Gupta, K., & Rakesh, N. (2018). IoT-based solution for food adulteration [Conference presentation]. Proceedings of First International Conference on Smart System, Innovations and Computing: SSIC 2017, Jaipur, India. Springer Singapore. https://doi.org/10.1007/978-981-10-5828-8_2
Hartarto, A., & Antara, N. T., (2018). Indonesia Industry 4.0 Readiness Index. Ministry of Industry, Indonesia. Badan Penelitian dan Pengembangan Industri Kementrian Perindustrian.
Hassoun, A., Aït-Kaddour, A., Abu-Mahfouz, A. M., Rathod, N. B., Bader, F., Barba, F. J., ... & Regenstein, J. (2022a). The fourth industrial revolution in the food industry—Part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition, 2022, 1-17. https://doi.org/10.1080/10408398.2022.2034735
Hassoun, A., Alhaj Abdullah, N., Aït-Kaddour, A., Ghellam, M., Beşir, A., Zannou, O., ... & Regenstein, J. M. (2022b). Food traceability 4.0 as part of the fourth industrial revolution: key enabling technologies. Critical Reviews in Food Science and Nutrition, 2022, 1-17. https://doi.org/10.1080/10408398.2022.2110033
Helwan, A., Sallam Ma’aitah, M. K., Abiyev, R. H., Uzelaltinbulat, S., & Sonyel, B. (2021). Deep learning based on residual networks for automatic sorting of bananas. Journal of Food Quality, 2021, Article 5516368. https://doi.org/10.1155/2021/5516368
Hong, I., Park, S., Lee, B., Lee, J., Jeong, D., & Park, S. (2014). IoT-based smart garbage system for efficient food waste management. The Scientific World Journal, 2014, Article 646953. https://doi.org/10.1155/2014/646953
Huang, Y., Lan, Y., Thomson, S. J., Fang, A., Hoffmann, W. C., & Lacey, R. E. (2010). Development of soft computing and applications in agricultural and biological engineering. Computers and electronics in agriculture, 71(2), 107-127. https://doi.org/10.1016/j.compag.2010.01.001
Ireland Craft Beers. (2017). Downstream beer. Retrieved January 15, 2023, from http://www.down-stream.io
Islam, M. S., & Dey, G. K. (2019, December 24-25). Precision agriculture: renewable energy based smart crop field monitoring and management system using WSN via IoT [Conference presentation]. 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). Dhaka, Bangladesh. https://doi.org/10.1109/STI47673.2019.9068017
Jagtap, S., & Rahimifard, S. (2019). The digitisation of food manufacturing to reduce waste case study of a ready meal factory. Waste Management, 87, 387-397. https://doi.org/10.1016/j.wasman.2019.02.017
Jahanbakhshi, A., & Salehi, R. (2019). Processing watermelon waste using Saccharomyces cerevisiae yeast and the fermentation method for bioethanol production. Journal of Food Process Engineering, 42(7), Article e13283. https://doi.org/10.1111/jfpe.13283.
Jiang, M., & Chen, Z. (2021). Symmetry detection algorithm to classify the tea grades using artificial intelligence. Microprocessors and Microsystems, 81, Article 103738. https://doi.org/10.1016/j.micpro.2020.103738
Jiang, Y., & Stylos, N. (2021). Triggers of consumers’ enhanced digital engagement and the role of digital technologies in transforming the retail ecosystem during COVID-19 pandemic. Technological Forecasting and Social Change, 172, Article 121029. https://doi.org/10.1016%2Fj.techfore.2021.121029
Jin, H., Qin, Y., Liang, H., Wan, L., Lan, H., Chen, G., ... & Hong, Z. L. (2017). A Mobile-Based High Sensitivity On-Field Organophosphorus Compounds Detecting System for IoT Based Food Safety Tracking. Journal of Sensors, 2017, Article 8797435. https://doi.org/10.1155/2017/8797435
Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
Kakatkar, C., Bilgram, V., & Füller, J. (2020). Innovation analytics: Leveraging artificial intelligence in the innovation process. Business Horizons, 63(2), 171-181. https://doi.org/10.1016/j.bushor.2019.10.006
Kalinowska, K., Wojnowski, W., & Tobiszewski, M. (2021). Smartphones as tools for equitable food quality assessment. Trends in Food Science & Technology, 111, 271-279. https://doi.org/10.1016/j.tifs.2021.02.068
Kittipanya-Ngam, P., & Tan, K. H. (2020). A framework for food supply chain digitalization: lessons from Thailand. Production Planning & Control, 31(2-3), 158-172. https://doi.org/10.1080/09537287.2019.1631462
Klerkx, L., & Begemann, S. (2020). Supporting food systems transformation: The what, why, who, where and how of mission-oriented agricultural innovation systems. Agricultural Systems, 184, Article 102901. https://doi.org/10.1016/j.agsy.2020.102901
Konstantinidis, F. K., Kansizoglou, I., Santavas, N., Mouroutsos, S. G., & Gasteratos, A. (2020). Marma: A mobile augmented reality maintenance assistant for fast-track repair procedures in the context of industry 4.0. Machines, 8(4), Article 88. https://doi.org/10.3390/machines8040088
Konur, S., Lan, Y., Thakker, D., Morkyani, G., Polovina, N., & Sharp, J. (2021). Towards design and implementation of Industry 4.0 for food manufacturing. Neural Computing and Applications, 2021, 1-13. https://doi.org/10.1007/s00521-021-05726-z
Kutyauripo, I., Rushambwa, M., & Chiwazi, L. (2023). Artificial intelligence applications in the agrifood sectors. Journal of Agriculture and Food Research, 11, Article 100502. https://doi.org/10.1016/j.jafr.2023.100502
Lehmann, R. J., Reiche, R., & Schiefer, G. (2012). Future internet and the agri-food sector: State-of-the-art in literature and research. Computers and Electronics in Agriculture, 89, 158-174. https://doi.org/10.1016/j.compag.2012.09.005
Limketkai, B. N., Mauldin, K., Manitius, N., Jalilian, L., & Salonen, B. R. (2021). The age of artificial intelligence: use of digital technology in clinical nutrition. Current surgery reports, 9(7), Article 20. https://doi.org/10.1007/s40137-021-00297-3
Lin, C. S., Pan, Y. C., Kuo, Y. X., Chen, C. K., & Tien, C. L. (2021). A study of automatic judgment of food color and cooking conditions with artificial intelligence technology. Processes, 9(7), Article 1128. https://doi.org/10.3390/pr9071128
Liu, Y., Han, W., Zhang, Y., Li, L., Wang, J., & Zheng, L. (2016). An Internet-of-Things solution for food safety and quality control: A pilot project in China. Journal of Industrial Information Integration, 3, 1-7. https://doi.org/10.1016/j.jii.2016.06.001
Liu, Y., Ma, X., Shu, L., Hancke, G. P., & Abu-Mahfouz, A. M. (2020). From Industry 4.0 to Agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE Transactions on Industrial Informatics, 17(6), 4322-4334. https://doi.org/10.1109/TII.2020.3003910.
Lu, B. H., Bateman, R. J., & Cheng, K. (2006). RFID enabled manufacturing: fundamentals, methodology and applications. International Journal of Agile Systems and Management, 1(1), 73-92. https://doi.org/10.1504/IJASM.2006.008860
Marquez, A. J., Herrera, M. A., Ojeda, M. U., & Maza, G. B. (2009). Neural network as tool for virgin olive oil elaboration process optimization. Journal of Food Engineering, 95(1), 135-141. http://dx.doi.org/10.1016/j.jfoodeng.2009.04.021
Matindoust, S., Baghaei-Nejad, M., Abadi, M. H. S., Zou, Z., & Zheng, L. R. (2016). Food quality and safety monitoring using gas sensor array in intelligent packaging. Sensor Review, 36(2), 169-183. https://doi.org/10.1108/SR-07-2015-0115
Mayer, M., & Baeumner, A. J. (2019). A megatrend challenging analytical chemistry: biosensor and chemosensor concepts ready for the internet of things. Chemical reviews, 119(13), 7996-8027. https://doi.org/10.1021/acs.chemrev.8b00719
Mededjel, M., Belalem, G., & Neki, A. (2017). Towards a traceability system based on cloud and fog computing. Multiagent and Grid Systems, 13(1), 47-68. https://doi.org/10.3233/MGS-170261
Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2020). IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of things Journal, 9(9), 6305-6324. https://doi.org/10.1109/JIOT.2020.2998584
Moeuf, A., Pellerin, R., Lamouri, S., Tamayo-Giraldo, S., & Barbaray, R. (2018). The industrial management of SMEs in the era of Industry 4.0. International journal of production research, 56(3), 1118-1136. https://doi.org/10.1080/00207543.2017.1372647
Mueller, B., & Mueller, C. (2016). The political economy of the Brazilian model of agricultural development: Institutions versus sectoral policy. The quarterly review of economics and finance, 62, 12-20. https://doi.org/10.1016/j.qref.2016.07.012
Nirenjena, S., BalaSubramanian, D. L., & Monisha, M. (2018). Advancement in monitoring the food supply chain management using IOT. International Journal of Pure and Applied Mathematics, 119(14), 1193-1196.
Nita, S. (2015). Application of big data technology in support of food manufacturers commodity demand forecasting. NEC Technical Journal, 10(1), 90-93.
Oltra‐Mestre, M. J., Hargaden, V., Coughlan, P., & Segura‐García del Río, B. (2021). Innovation in the Agri‐Food sector: Exploiting opportunities for Industry 4.0. Creativity and Innovation Management, 30(1), 198-210. https://doi.org/10.1111/caim.12418
Oluyisola, O. E., Bhalla, S., Sgarbossa, F., & Strandhagen, J. O. (2022). Designing and developing smart production planning and control systems in the industry 4.0 era: a methodology and case study. Journal of Intelligent Manufacturing, 33(1), 311-332. https://doi.org/10.1007/s10845-021-01808-w
Pathan, M., Patel, N., Yagnik, H., & Shah, M. (2020). Artificial cognition for applications in smart agriculture: A comprehensive review. Artificial Intelligence in Agriculture, 4, 81-95. https://doi.org/10.1016/j.aiia.2020.06.001
Rahimifard, S., Woolley, E., Webb, D. P., Garcia-Garcia, G., Stone, J., Jellil, A., ... & Trollman, H. (2017, April 26-28). Forging new frontiers in sustainable food manufacturing [Conference presentation]. Sustainable Design and Manufacturing 2017. SDM 2017. Smart Innovation, Systems and Technologies, Springer, Cham. https://doi.org/10.1007/978-3-319-57078-5_2
Ramesh, M. V., & Das, R. N. (2012, August 1-3). A public transport system based sensor network for fake alcohol detection [Conference presentation]. Wireless Communications and Applications: First International Conference, ICWCA 2011, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29157-9_13
Remondino, M., & Zanin, A. (2022). Logistics and agri-food: Digitization to increase competitive advantage and sustainability. Literature review and the case of Italy. Sustainability, 14(2), Article 787. https://doi.org/10.3390/su14020787
Roldán, J. J., Crespo, E., Martín-Barrio, A., Peña-Tapia, E., & Barrientos, A. (2019). A training system for Industry 4.0 operators in complex assemblies based on virtual reality and process mining. Robotics and computer-integrated manufacturing, 59, 305-316. https://doi.org/10.1016/j.rcim.2019.05.004
Rowan, N. J. (2019). Pulsed light as an emerging technology to cause disruption for food and adjacent industries–Quo vadis?. Trends in food science & technology, 88, 316-332. https://doi.org/10.1016/j.tifs.2019.03.027
Saguy, I. S., Roos, Y. H., & Cohen, E. (2018). Food engineering and food science and technology: Forward-looking journey to future new horizons. Innovative Food Science & Emerging Technologies, 47, 326-334. https://doi.org/10.1016/j.ifset.2018.03.001
Sahni, V., Srivastava, S., & Khan, R. (2021). Modelling techniques to improve the quality of food using artificial intelligence. Journal of Food Quality, 2021, 1-10. https://doi.org/10.1155/2021/2140010
Samad, S., Ahmed, F., Naher, S., Kabir, M. A., Das, A., Amin, S., & Islam, S. M. S. (2022). Smartphone apps for tracking food consumption and recommendations: Evaluating artificial intelligence-based functionalities, features and quality of current apps. Intelligent Systems with Applications, 15, Article 200103. https://doi.org/10.1016/j.iswa.2022.200103
Sanaeifar, A., Bakhshipour, A., & De La Guardia, M. (2016). Prediction of banana quality indices from color features using support vector regression. Talanta, 148, 54-61. https://doi.org/10.1016/j.talanta.2015.10.073
Sander, F., Semeijn, J., & Mahr, D. (2018). The acceptance of blockchain technology in meat traceability and transparency. British Food Journal, 120(9), 2066-2079. https://doi.org/10.1108/BFJ-07-2017-0365
Shahi, C., & Sinha, M. (2020). Digital transformation: challenges faced by organizations and their potential solutions. International Journal of Innovation Science, 13(1), 17-33. https://doi.org/10.1108/IJIS-09-2020-0157
Shih, C. W., & Wang, C. H. (2016). Integrating wireless sensor networks with statistical quality control to develop a cold chain system in food industries. Computer Standards and Interfaces,45, 62-78. https://doi.org/10.1016/j.csi.2015.12.004
Shufutinsky, A., Beach, A. A., & Saraceno, A. (2020). OD for robots? Implications of Industry 4.0 on talent acquisition and development. Organization Development Journal, 38(3), 59-76.
Smiljkovikj, K., & Gavrilovska, L. (2014). SmartWine: Intelligent end-to-end cloud-based monitoring system. Wireless personal communications, 78, 1777-1788. https://doi.org/10.1007/s11277-014-1905-x
Smith, P. D. (2018). Hands-On Artificial Intelligence for Beginners: An introduction to AI concepts, algorithms, and their implementation. Packt Publishing Ltd.
Tabrizi, B., Lam, E., Girard, K., & Irvin, V. (2019). Digital transformation is not about technology. Harvard business review, 13, 1-6.
Tasca, P., & Tessone, C. J. (2017). Taxonomy of blockchain technologies. Principles of identification and classification. arXiv preprint arXiv:1708.04872. https://doi.org/10.48550/arXiv.1708.04872
Trinh, C., Meimaroglou, D., & Hoppe, S. (2021). Machine learning in chemical product engineering: The state of the art and a guide for newcomers. Processes, 9(8), Article 1456. https://doi.org/10.3390/pr9081456
van Geest, M., Tekinerdogan, B., & Catal, C. (2021). Design of a reference architecture for developing smart warehouses in industry 4.0. Computers in industry, 124, Article 103343. https://doi.org/10.1016/j.compind.2020.103343
Verma, A., Bansal, M., & Verma, J. (2020). Industry 4.0: Reshaping the future of HR. Strategic Direction, 36(5), 9-11. https://doi.org/10.1108/SD-12-2019-0235
Walter, A., Finger, R., Huber, R., & Buchmann, N. (2017). Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences, 114(24), 6148-6150. https://doi.org/10.1073/pnas.1707462114
Wang, Z., Hu, M., & Zhai, G. (2018). Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data. Sensors, 18(4), Article 1126. https://doi.org/10.3390/s18041126
Wang., J, & Yue, H. (2017). Food safety pre-warning system based on data mining for a sustainable food supply chain. Food Control, 73, 223-229. https://doi.org/10.1016/j.foodcont.2016.09.048
Yan, B., Hu, D., & Shi, P. (2012). A traceable platform of aquatic foods supply chain based on RFID and EPC Internet of Things. International Journal of RF Technologies, 4(1), 55-70. https://doi.org/10.3233/RFT-2012-0035
Yaqub, M. Z., & Alsabban, A. (2023). Industry-4.0-Enabled Digital Transformation: Prospects, Instruments, Challenges, and Implications for Business Strategies. Sustainability, 15(11), Article 8553. https://doi.org/10.3390/su15118553
Yasin, M. Z. (2022). Technical efficiency and total factor productivity growth of Indonesian manufacturing industry: does openness matter?. Studies in Microeconomics, 10(2), 195-224. https://doi.org/10.1177/23210222211024438
Zhang, M., Fan, B., Zhang, N., Wang, W., & Fan, W. (2021). Mining product innovation ideas from online reviews. Information Processing & Management, 58(1), Article 102389. https://doi.org/10.1016/j.ipm.2020.102389
Zhang, X., Zhou, T., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Food product design: a hybrid machine learning and mechanistic modeling approach. Industrial & Engineering Chemistry Research, 58(36), 16743-16752. https://doi.org/10.1021/acs.iecr.9b02462
Zhang, Y., Chen, B., & Lu, X. (2011, August 1-3). Intelligent monitoring system on refrigerator trucks based on the internet of things [Conference presentation]. International conference on wireless communications and applications (ICWCA 2011). Sanya, China. https://doi.org/10.1007/978-3-642-29157-9
Zhao, G., Guo, Y., Sun, X., & Wang, X. (2015). A system for pesticide residues detection and agricultural products traceability based on acetylcholinesterase biosensor and internet of things. International Journal of Electrochemical Science, 10(4), 3387-3399. https://doi.org/10.1016/S1452-3981(23)06548-3
Zhong, R. Y., Li, Z., Pang, L. Y., Pan, Y., Qu, T., & Huang, G. Q. (2013). RFID-enabled real-time advanced planning and scheduling shell for production decision making. International Journal of Computer Integrated Manufacturing, 26(7), 649-662. https://doi.org/10.1080/0951192X.2012.749532
Zhou, L., Zhang, C., Liu, F., Qiu, Z., & He, Y. (2019). Application of deep learning in food: a review. Comprehensive reviews in food science and food safety, 18(6), 1793-1811. https://doi.org/10.1016/j.crfs.2021.03.009
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Journal of Current Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.