Total Protein Content of Bee Bread in Apis Cerana Combs and Tetragonula pegdeni Storage Pots of Different Plant Sources from Chanthaburi Province, Thailand
DOI:
https://doi.org/10.59796/jcst.V13N3.2023.1139Keywords:
acetolysis, Apis cerana, bee bread, bradford assay, Tetragonula pegdeni, total protein contentAbstract
Bee bread is produced from fermented pollen. It is a popular bee product with high levels of protein and nutrients. The bee bread samples were collected from eight indigenous bee colonies in Chanthaburi province: three colonies of Apis cerana and five colonies of Tetragonula pegdeni. The study aims to compare the total protein content of bee bread using the Bradford assay and to identify the plant families that are food sources for these bees using the acetolysis. The results revealed that the protein content of bee bread from A. cerana ranged between 1.48±0.14 and 7.03±0.54 g/100 g, whereas it ranged between 1.78±0.43 and 2.60±0.13 g/100 g in T. pegdeni. Moreover, this result reveals a correlation between the food plant diversity and bee foraging. The pollen grains from bee bread of A. cerana and T. pegdeni were dominant in the family Fabaceae, high-protein plants. Besides, A. cerana (AC3) had the highest protein content of the main mixture of Asteraceae, Fabaceae, and Malvaceae pollen. Furthermore, the major plant families in this bee bread were Acanthaceae, Amaranthaceae, Cucurbitaceae, Euphorbiaceae, and Juncaceae. Tetragonula pegdeni had a greater pollen diversity of bee bread than A. cerana, which was dominant in the families Xyridaceae, Dipterocarpaceae, Fagaceae, Poaceae, and Rutaceae. As a result, the total protein content of the A. cerana colonies was higher than that of the T. pegdeni colonies. As a result, bee bread may be used as a protein source derived from bee products.
References
Almeida-Muradian, L. B., Pamplona, L. C., Coimbra, S., & Barth, O. M. (2005). Chemical composition and botanical evaluation of dried bee pollen pellets. Journal of Food Composition and Analysis, 18(1), 105–111. https://doi.org/10.1016/j.jfca.2003.10.008
Araujo, E. D., Costa, M., Chaud-Netto, J., & Fowler, H. G. (2004). Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Brazilian Journal of Biology, 64(3b), 563–568. https://doi.org/10.1590/S1519-69842004000400003
Basari, N., Ramli, S. N., & Khairi, N. S. M. (2018). Food reward and distance influence the foraging pattern of stingless bee, Heterotrigona itama. Insects, 9(4), Article 138. https://doi:10.3390/insects9040138
Belina-Aldemita, Ma. D., Opper, C., Schreiner, M., & D’Amico, S. (2019). Nutritional composition of pot-pollen produced by stingless bees (Tetragonula biroi Friese) from the Philippines. Journal of Food Composition and Analysis, 82, Article 103215. https://doi: 10.1016/j.jfca.2019.04.003
Biesmeijer, J. C., & Judith Slaa, E. (2004). Information flow and organization of stingless bee foraging. Apidologie, 35(2), 143–157. https://doi.org/10.1051/apido:2004003
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 7(72), 248–254. http://doi: 10.1006/abio.1976.9999
de Sá-Otero, M. D. P., Armesto-Baztan, S., & Díaz-Losada, E. (2009). Analysis of protein content in pollen loads produced in north-west Spain. Grana, 48(4), 290–296. https://doi.org/10.1080/00173130903149140
de Souza, R. R., de Abreu, V. H. R., & de Novais, J. S. (2019). Melissopalynology in Brazil: a map of pollen types and published productions between 2005 and 2017. Palynology, 43(4), 690–700. https://doi.org/10.1080/01916122.2018.1542355
Erdtman, G. (1960). The Acetolysis Method—A Revised Description. Svensk Botanisk Tidskrift, 54, 561–564.
García-García, M. C., Ortiz, P. L., & Dapena, M. J. D. (2004). Variations in the weights of pollen loads collected by Apis mellifera L. Grana, 43(3),183–192. https://doi.org/10.1080/00173130410020350
Human, H., & Nicolson, S. W. (2006). Nutritional content of fresh, bee-collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochemistry, 67, 1486–1492. https://doi.org/10.1016/j.phytochem.2006.05.023
Ibrahim, I. F., Balasundram, S. K., Abdullah, N. A. P., Alias, M. S., & Mardan, M. (2012). Morphological characterization of pollen collected by Apis dorsata from tropical rainforest. International Journal of Botany, 8(3), 96–106. https://doi.org/10.3923/ijb.2012.96.106
Kieliszek, M., Piwowarek, K., Kot, A. M., Błazejak, S., Chlebowska-Smigiel, A., & Wolska, I. (2018). Pollen and bee bread as new health-oriented products: A review. Trends in Food Sciences and Technology, 71, 170–180. https://doi.org/10.1016/j.tifs.2017.10.021
Lumsa-ed, J., Prommae, P., & Suthaso, V. (2017). Culturing Stingless Bee in Surat Thani province. Prawarun Agricultural Journal, 14(1), 1–9.
Mohammad, S. M., Mahmud-Ab-Rashid, N. K., & Zawawi, N. (2020). Botanical origin and nutritional values of bee bread of stingless bee (Heterotrigona itama) from Malaysia. Journal of Food Quality, 2020, Article 2845757. https://doi.org/10.1155/2020/2845757
Mohammad, S. M., Mahmud-Ab-Rashid, N. K., & Zawawi, N. (2021). Stingless bee-collected pollen (bee bread): chemical and microbiology properties and health benefits. Molecules, 26(4), Article 957. https://doi.org/10.3390/molecules26040957
Nicolson, S. W., & Human, H. (2012). Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, Asteraceae). Apidologie, 44, 144–152. https://doi.org/10.1007/s13592-012-0166-5
Ramalho, M., Giannini, T. C., Malagodi-braga, K. S., Vera, L., & Imperatriz-fonseca, V. L. (2009). Pollen harvest by stingless bee foragers (Hymenoptera, Apidae, Meliponinae). Grana, 33(4-5), 239–244. https://doi.org/10.1080/00173139409429005
Ramalho, M., Imperatriz-Fonseca, V. L., & Giannini, T. C. (1998). Within-colony size variation of foragers and pollen load capacity in the stingless bee Melipona quadrifasciata anthidioides Lepeletier (Apidae, Hymenoptera). Apidologie, 29(3), 221–228. https://doi.org/10.1051/apido:19980302
Smith, J. P., Heard, T. A., Beekman, M., & Gloag, R. (2017). Flight range of the Australian stingless bee Tetragonula carbonaria (Hymenoptera: Apidae). Austral Entomology, 56(1), 50–53. https://doi.org/10.1111/aen.12206
Taha, E. K. A., Al-Kahtani, S., & Taha, R. (2019). Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi Journal of Biological Sciences, 26(2), 232–237. https://doi.org/10.1016/j.sjbs.2017.06.003
Thakodee, T., Deowanish, S., & Duangmal, K. (2018). Melissopalynological analysis of stingless bee (Tetragonula pagdeni) honey in Eastern Thailand. Journal of Asia-Pacific Entomology, 21(2), 620–630. https://doi.org/10.1016/j.aspen.2018.04.003
Urcan, A. C., Criste, A. D., Dezmirean, D. S., Bobiș, O., Bonta, V., Dulf, F. V., ... & Campos, M. G. (2021). Botanical origin approach for a better understanding of chemical and nutritional composition of beebread as an important value-added food supplement. LWT- Food Science and Technology, 142, Article 111068. https://doi.org/10.1016/j.lwt.2021.111068
Urcan, A., Mařghitas, L. A., Dezmirean, D. S., Bobiş, O., Bonta, V., Mureşan, C.I., & Mǎrgǎoan, R. (2017). Chemical composition and biological activities of beebread–review. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Animal Science & Biotechnologies, 74(1), 1–9. https://doi.org/10.15835/buasvmcn-asb:12646
Westreich, L. R., & Tobin, P. C. (2021). Comparison of pollen grain treatments without mechanical fracturation prior to protein quantification. Journal of Insect Science, 21(4), 1–4. https://doi.org/10.1093/jisesa/ieab043
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Current Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.