Total Protein Content of Bee Bread in Apis Cerana Combs and Tetragonula pegdeni Storage Pots of Different Plant Sources from Chanthaburi Province, Thailand


  • Salinthip Kankasemsuk Demonstration School University of Phayao, University of Phayao, Phayao 56000, Thailand
  • Chanita Tibmanoo Demonstration School University of Phayao, University of Phayao, Phayao 56000, Thailand
  • Boonchuang Boonsuk Program in Biology, School of Science, University of Phayao, Phayao 56000, Thailand
  • Saowalak Bunma Program in Biology, School of Science, University of Phayao, Phayao 56000, Thailand
  • Tipwan Suppasat rogram in Biology, School of Science, University of Phayao, Phayao 56000, Thailand



acetolysis, Apis cerana, bee bread, bradford assay, Tetragonula pegdeni, total protein content


Bee bread is produced from fermented pollen. It is a popular bee product with high levels of protein and nutrients. The bee bread samples were collected from eight indigenous bee colonies in Chanthaburi province: three colonies of Apis cerana and five colonies of Tetragonula pegdeni. The study aims to compare the total protein content of bee bread using the Bradford assay and to identify the plant families that are food sources for these bees using the acetolysis. The results revealed that the protein content of bee bread from A. cerana ranged between 1.48±0.14 and 7.03±0.54 g/100 g, whereas it ranged between 1.78±0.43 and 2.60±0.13 g/100 g in T. pegdeni. Moreover, this result reveals a correlation between the food plant diversity and bee foraging. The pollen grains from bee bread of A. cerana and T. pegdeni were dominant in the family Fabaceae, high-protein plants. Besides, A. cerana (AC3) had the highest protein content of the main mixture of Asteraceae, Fabaceae, and Malvaceae pollen. Furthermore, the major plant families in this bee bread were Acanthaceae, Amaranthaceae, Cucurbitaceae, Euphorbiaceae, and Juncaceae. Tetragonula pegdeni had a greater pollen diversity of bee bread than A. cerana, which was dominant in the families Xyridaceae, Dipterocarpaceae, Fagaceae, Poaceae, and Rutaceae. As a result, the total protein content of the A. cerana colonies was higher than that of the T. pegdeni colonies. As a result, bee bread may be used as a protein source derived from bee products.


Almeida-Muradian, L. B., Pamplona, L. C., Coimbra, S., & Barth, O. M. (2005). Chemical composition and botanical evaluation of dried bee pollen pellets. Journal of Food Composition and Analysis, 18(1), 105–111.

Araujo, E. D., Costa, M., Chaud-Netto, J., & Fowler, H. G. (2004). Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Brazilian Journal of Biology, 64(3b), 563–568.

Basari, N., Ramli, S. N., & Khairi, N. S. M. (2018). Food reward and distance influence the foraging pattern of stingless bee, Heterotrigona itama. Insects, 9(4), Article 138. https://doi:10.3390/insects9040138

Belina-Aldemita, Ma. D., Opper, C., Schreiner, M., & D’Amico, S. (2019). Nutritional composition of pot-pollen produced by stingless bees (Tetragonula biroi Friese) from the Philippines. Journal of Food Composition and Analysis, 82, Article 103215. https://doi: 10.1016/j.jfca.2019.04.003

Biesmeijer, J. C., & Judith Slaa, E. (2004). Information flow and organization of stingless bee foraging. Apidologie, 35(2), 143–157.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 7(72), 248–254. http://doi: 10.1006/abio.1976.9999

de Sá-Otero, M. D. P., Armesto-Baztan, S., & Díaz-Losada, E. (2009). Analysis of protein content in pollen loads produced in north-west Spain. Grana, 48(4), 290–296.

de Souza, R. R., de Abreu, V. H. R., & de Novais, J. S. (2019). Melissopalynology in Brazil: a map of pollen types and published productions between 2005 and 2017. Palynology, 43(4), 690–700.

Erdtman, G. (1960). The Acetolysis Method—A Revised Description. Svensk Botanisk Tidskrift, 54, 561–564.

García-García, M. C., Ortiz, P. L., & Dapena, M. J. D. (2004). Variations in the weights of pollen loads collected by Apis mellifera L. Grana, 43(3),183–192.

Human, H., & Nicolson, S. W. (2006). Nutritional content of fresh, bee-collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochemistry, 67, 1486–1492.

Ibrahim, I. F., Balasundram, S. K., Abdullah, N. A. P., Alias, M. S., & Mardan, M. (2012). Morphological characterization of pollen collected by Apis dorsata from tropical rainforest. International Journal of Botany, 8(3), 96–106.

Kieliszek, M., Piwowarek, K., Kot, A. M., Błazejak, S., Chlebowska-Smigiel, A., & Wolska, I. (2018). Pollen and bee bread as new health-oriented products: A review. Trends in Food Sciences and Technology, 71, 170–180.

Lumsa-ed, J., Prommae, P., & Suthaso, V. (2017). Culturing Stingless Bee in Surat Thani province. Prawarun Agricultural Journal, 14(1), 1–9.

Mohammad, S. M., Mahmud-Ab-Rashid, N. K., & Zawawi, N. (2020). Botanical origin and nutritional values of bee bread of stingless bee (Heterotrigona itama) from Malaysia. Journal of Food Quality, 2020, Article 2845757.

Mohammad, S. M., Mahmud-Ab-Rashid, N. K., & Zawawi, N. (2021). Stingless bee-collected pollen (bee bread): chemical and microbiology properties and health benefits. Molecules, 26(4), Article 957.

Nicolson, S. W., & Human, H. (2012). Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, Asteraceae). Apidologie, 44, 144–152.

Ramalho, M., Giannini, T. C., Malagodi-braga, K. S., Vera, L., & Imperatriz-fonseca, V. L. (2009). Pollen harvest by stingless bee foragers (Hymenoptera, Apidae, Meliponinae). Grana, 33(4-5), 239–244.

Ramalho, M., Imperatriz-Fonseca, V. L., & Giannini, T. C. (1998). Within-colony size variation of foragers and pollen load capacity in the stingless bee Melipona quadrifasciata anthidioides Lepeletier (Apidae, Hymenoptera). Apidologie, 29(3), 221–228.

Smith, J. P., Heard, T. A., Beekman, M., & Gloag, R. (2017). Flight range of the Australian stingless bee Tetragonula carbonaria (Hymenoptera: Apidae). Austral Entomology, 56(1), 50–53.

Taha, E. K. A., Al-Kahtani, S., & Taha, R. (2019). Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi Journal of Biological Sciences, 26(2), 232–237.

Thakodee, T., Deowanish, S., & Duangmal, K. (2018). Melissopalynological analysis of stingless bee (Tetragonula pagdeni) honey in Eastern Thailand. Journal of Asia-Pacific Entomology, 21(2), 620–630.

Urcan, A. C., Criste, A. D., Dezmirean, D. S., Bobiș, O., Bonta, V., Dulf, F. V., ... & Campos, M. G. (2021). Botanical origin approach for a better understanding of chemical and nutritional composition of beebread as an important value-added food supplement. LWT- Food Science and Technology, 142, Article 111068.

Urcan, A., Mařghitas, L. A., Dezmirean, D. S., Bobiş, O., Bonta, V., Mureşan, C.I., & Mǎrgǎoan, R. (2017). Chemical composition and biological activities of beebread–review. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Animal Science & Biotechnologies, 74(1), 1–9.

Westreich, L. R., & Tobin, P. C. (2021). Comparison of pollen grain treatments without mechanical fracturation prior to protein quantification. Journal of Insect Science, 21(4), 1–4.




How to Cite

Kankasemsuk, S., Tibmanoo, C., Boonsuk, B., Bunma, S. ., & Suppasat, T. (2023). Total Protein Content of Bee Bread in Apis Cerana Combs and Tetragonula pegdeni Storage Pots of Different Plant Sources from Chanthaburi Province, Thailand. Journal of Current Science and Technology, 13(3), 714–724.



Research Article