In vitro Survival of Microencapsulated Canine-Specific Probiotics Under Simulated Gastrointestinal Tract Conditions and During Storage


  • Ngamlak Foongsawat Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
  • Sirinthorn Sunthornthummas National Biobank of Thailand (NBT), National Science and Technology Development Agency, Pathum Thani, Thailand 12120
  • Achariya Rangsiruji Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
  • Siriruk Sarawaneeyaruk Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
  • Kedvadee Insian Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
  • Onanong Pringsulaka Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand



Enterococcus hirae, Ligilactobacillus animalis, probiotic, dogs, microencapsulation, goat milk


The survival of probiotics in the gastrointestinal system of dogs is crucial for them to provide health benefits. However, probiotics must also endure various physical conditions during commercial production and storage. Therefore, this study employed the microencapsulation technique to ensure the survival of probiotics using alginate as the encapsulation material, both alone and in combination with goat milk (alginate-goat milk). The study assessed the survival rates of two probiotic LAB strains, Enterococcus hirae Pom 4 and Ligilactobacillus animalis FB2, in both types of matrices under simulated dog gastrointestinal conditions, during food production, and 28 days of refrigeration at 4°C. The findings revealed that alginate-goat milk microcapsules had the highest encapsulation yield, and the viability of microencapsulated LAB cells in the alginate-goat milk matrix was the best protection for both probiotic strains under all conditions, including pasteurization temperature. Even after pasteurization, viable counts exceeding 6 log cfu/g were observed, indicating the promising application of alginate-goat milk microcapsules for optimal protection, enabling probiotics to survive until they reach the intended site and provide health benefits to dogs.


Bao, S. S., Hu, X. C., Zhang, K., Xu, X. K., Zhang, H. M., & Huang, H. (2011). Characterization of spray‐dried microalgal oil encapsulated in cross‐linked sodium caseinate matrix induced by microbial transglutaminase. Journal of Food Science, 76(1), E112-E118.

Bhat, A. R., Irorere, V. U., Bartlett, T., Hill, D., Kedia, G., Charalampopoulos, D., Nualkaekul, S., & Radecka, I. (2015). Improving survival of probiotic bacteria using bacterial poly-γ-glutamic acid. International Journal of Food Microbiology, 196, 24-31.

Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104(4), 467-483.

Burgain, J., Scher, J., Lebeer, S., Vanderleyden, J., Cailliez-Grimal, C., Corgneau, M., ... & Gaiani, C. (2014). Significance of bacterial surface molecules interactions with milk proteins to enhance microencapsulation of Lactobacillus rhamnosus GG. Food Hydrocolloids, 41, 60-70.

Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., & del Carmen Villarán, M. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142(1-2), 185-189.

Dikit, P., & Maneerat, S. (2015). Survival of encapsulated potentially probiotic Lactobacillus plantarum D6SM3 with bioemulsifier derived from spent yeast in simulated gastrointestinal conditions. Songklanakarin Journal of Science and Technology, 37(4). 425-432.

FAO/WHO, 2002. Guidelines for the evaluation of probiotics in food. Food and Agriculture Organization of the United Nations, World Health Organization, London, Ontario. Retrieved Feb. 12, 2023. From probiotic_guidelines.pdf.

Guérin, D., Vuillemard, J. C., & Subirade, M. (2003). Protection of bifidobacteria encapsulated in polysaccharide-protein gel beads against gastric juice and bile. Journal of Food Protection, 66(11), 2076-2084.

Heidebach, T., Först, P., & Kulozik, U. (2012). Microencapsulation of probiotic cells for food applications. Critical Reviews in Food Science and Nutrition, 52(4), 291-311.

Ilha, E. C., Da Silva, T., Lorenz, J. G., de Oliveira Rocha, G., & Sant’Anna, E. S. (2015). Lactobacillus paracasei isolated from grape sourdough: Acid, bile, salt, and heat tolerance after spray drying with skim milk and cheese whey. European Food Research and Technology, 240, 977-984.

Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: A review. International Scholarly Research Notices, 2013. Article 481651.

Krasaekoopt, W., Bhandari, B., & Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal, 13(1), 3-13.

Lane, D. J. (1991). 16S/23S rRNA sequencing. New York, US: Wiley.

Lee, D., Goh, T. W., Kang, M. G., Choi, H. J., Yeo, S. Y., Yang, J., ... & Kim, Y. (2022). Perspectives and advances in probiotics and the gut microbiome in companion animals. Journal of Animal Science and Technology, 64(2), 197–217.

Mahmoud, M., Abdallah, N. A., El-Shafei, K., Tawfik, N. F., & El-Sayed, H. S. (2020). Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon, 6(3), e03541.

Moumita, S., Goderska, K., Johnson, E. M., Das, B., Indira, D., Yadav, R., ... & Jayabalan, R. (2017). Evaluation of the viability of free and encapsulated lactic acid bacteria using in-vitro gastrointestinal model and survivability studies of synbiotic microcapsules in dry food matrix during storage. LWT-Food Science and Technology, 77, 460-467.

Prasanna, P. H. P., & Charalampopoulos, D. (2018). Encapsulation of Bifidobacterium longum in alginate-dairy matrices and survival in simulated gastrointestinal conditions, refrigeration, cow milk and goat milk. Food Bioscience, 21, 72-79.

Pringsulaka, O., Patarasinpaiboon, N., Suwannasai, N., Atthakor, W., & Rangsiruji, A. (2011). Isolation and characterisation of a novel Podoviridae-phage infecting Weissella cibaria N 22 from Nham, a Thai fermented pork sausage. Food Microbiology, 28(3), 518-525.

Rajam, R., & Subramanian, P. (2022). Encapsulation of probiotics: past, present and future. Beni-Suef University Journal of Basic and Applied Sciences, 11, Article 46.

Razavi, S., Janfaza, S., Tasnim, N., Gibson, D. L., & Hoorfar, M. (2021). Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocolloids, 120, 106882.

Sambrook, J., Fritsch, E. R., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. 2nd ed. New York: Cold Spring Harbor.

Shi, L. E., Li, Z. H., Li, D. T., Xu, M., Chen, H. Y., Zhang, Z. L., & Tang, Z. X. (2013). Encapsulation of probiotic Lactobacillus bulgaricus in alginate–milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. Journal of Food Engineering, 117(1), 99-104.

Silanikove, N., Leitner, G., & Merin, U. (2015). The Interrelationships between lactose intolerance and the modern dairy industry: global perspectives in evolutional and historical backgrounds. Nutrients, 7, 7312-7331.

Sun, W., & Griffiths, M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. International Journal of Food Microbiology, 61(1), 17-25.

Teoh, P. L., Mirhosseini, S. H., Mustafa, S., & Manap, M. Y. A. (2011). Tolerance of free and encapsulated probiotics towards heat treatment and high sodium concentration. Journal of Food, Agriculture & Environment, 9(1), 69-73.

van Leeuwen, S. S., te Poele, E. M., Chatziioannou, A. C., Benjamins, E., Haandrikman, A., & Dijkhuizen, L. (2020). Goat milk oligosaccharides: their diversity, quantity, and functional properties in comparison to human milk oligosaccharides. Journal of Agricultural Food Chemistry, 68(47), 13469–13485.

Vivek, K., Mishra, S., Pradhan, R. C., Nagarajan, M., Kumar, P. K., Singh, S. S., Manvi, D., & Gowda, NA. N. (2023). A comprehensive review on microencapsulation of probiotics: technology, carriers and current trends. Applied Food Research, 3(1), 100248.

Wang, S. Y., Ho, Y. F., Chen, Y. P., & Chen, M. J. (2015). Effects of a novel encapsulating technique on the temperature tolerance and anti-colitis activity of the probiotic bacterium Lactobacillus kefiranofaciens M1. Food Microbiology, 46, 494-500.

Zabot, G. L., Schaefer Rodrigues, F., Polano Ody, L., Vinícius Tres, M., Herrera, E., Palacin, H., ... & Olivera-Montenegro, L. (2022). Encapsulation of bioactive compounds for food and agricultural applications. Polymers (Basel),14(19), Article 4194.




How to Cite

Foongsawat, N. ., Sunthornthummas , S., Rangsiruji , A., Sarawaneeyaruk , S., Insian, K., & Pringsulaka, O. (2023). In vitro Survival of Microencapsulated Canine-Specific Probiotics Under Simulated Gastrointestinal Tract Conditions and During Storage. Journal of Current Science and Technology, 13(3), 584–594.



Research Article