Nonparametric Bootstrap Confidence Intervals for The Population Mean of a Zero-Truncated Poisson-Lindley Distribution and Their Application

Authors

  • Wannaphon Suriyakat Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
  • Wararit Panichkitkosolkul Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand

DOI:

https://doi.org/10.59796/jcst.V13N3.2023.1077

Keywords:

Bootstrap interval, Count data, Interval estimation, Lindley distribution, Simulation

Abstract

Recently, the zero-truncated Poisson-Lindley distribution has been proposed for studying count data containing non-zero values. However, the nonparametric bootstrap confidence interval estimation of the population mean has not yet been studied. In this study, confidence interval estimation based on percentile, simple, and biased-corrected bootstrap methods was compared in terms of coverage probability and average interval length via Monte Carlo simulation. The true values of parameter (gif.latex?\Theta)  were set as 0.25, 0.5, 1, 1.5, and 2, and the population means  are approximate 7.7586, 4.0909, 2.4000, 1.8817, and 1.6364, respectively. The bootstrap samples (gif.latex?\beta=1,000)  of size  were generated from the original sample, and each simulation was repeated 1,000 times. The results indicate that attaining the nominal confidence level using the bootstrap confidence intervals was impossible for small sample sizes regardless of the other settings. Moreover, when the sample size was large, the performance of the nonparametric bootstrap confidence intervals was not substantially different. Overall, the bias-corrected bootstrap confidence interval outperformed the others, even for small sample sizes. Last, the nonparametric bootstrap confidence intervals were used to calculate the confidence interval for the population mean of the zero-truncated Poisson-Lindley distribution via two numerical examples, the results of which match those from the simulation study.

References

Canty, A., & Ripley, B. (2021). boot: Bootstrap R (S-Plus) functions. R package version 1.3-28.1. Retrieved from https://cran.rproject.org/web/packages/boot/index.html.

Chernick, M. R. & Labudde, R. A. (2011). An introduction to bootstrap methods with applications to R (1st ed.). New Jersey: John Wiley and Sons.

Cullen, M. J., Walsh, J., Nicholson, L. B., & Harris, J. B. (1990). Ultrastructural localization of dystropin in human muscle by using gold immunolabelling. Proceedings of the Royal Society of London. B. Biological Sciences, 240(1297), 197-210. https://doi.org/10.1098/rspb.1990.0034.

David, F. N., & Johnson, N. L. (1952). The truncated Poisson. Biometrics, 8(4), 275-285. https://doi.org/10.2307/3001863

Efron, B. (1982). The Jackknife, the bootstrap, and other resampling plans [Conference presentation]. CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia: SIAM.

Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171-185. https://doi.org/10.1080/01621459.1987.10478410

Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap (1st ed.). London: Chapman and Hall.

Flowers-Cano, R. S., Ortiz-Gómez, R., León-Jiménez, J. E., Rivera, R. L., & Cruz, L. A. P. (2018). Comparison of bootstrap confidence intervals using Monte Carlo Simulations. Water, 10(2), Article 166. https://doi.org/10.3390/w10020166

Ghitany, M. E., Al-Mutairi, D. K., & Nadarajah, S. (2008). Zero-truncated Poisson-Lindley distribution and its application. Mathematics and Computers in Simulation, 79(3), 279-287. https://doi.org/10.1016/j.matcom.2007.11.021

Henningsen, A., & Toomet, O. (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics, 26(3), 443-458. https://doi.org/10.1007/s00180-010-0217-1

Hussain, T. (2020). A zero truncated discrete distribution: Theory and applications to count data. Pakistan Journal of Statistics and Operation Research, 16(1), 167-190. https://doi.org/10.18187/pjsor.v16i1.2133

Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299-314. https://doi.org/10.1080/10618600.1996.10474713

Kirby, K. N., & Gerlanc, D. (2013). BootES: An R package for bootstrap confidence intervals on effect sizes. Behavior Research Methods, 45(4), 905-927. https://doi.org/10.3758/s13428-013-0330-5

Kissell, R., & Poserina, J. (2017). Optimal sports math, statistics, and fantasy (1st ed.). Massachusetts, US: Academic Press.

Kostyshak, S. (2019). bootstrap: Functions for the book An introduction to the bootstrap. R package version 2019.6. Retrieved from https://cran.rproject.org/web/packages/bootstrap/index.html.

Lefebvre, M. (2000). Applied probability and statistics (1st ed.). Springer Sciences.

Lindley, D. V. (1958). Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society: Series B (Methodological), 20(1), 102-107. https://doi.org/10.1111/j.2517-6161.1958.tb00278.x

Meeker, W. Q., Hahn, G. J., & Escobar, L. A. (2017). Statistical intervals: A guide for practitioners and researchers (2nd ed.). Toronto: John Wiley and Sons.

Murphy, M. V. (2022). semEff: Automatic calculation of effects for piecewise structural equation models. R package version 0.6.1. Retrieved from https://cran.rproject.org/web/packages/semEff/index.html.

Reiser, M., Yao, L., Wang, X., Wilcox, J. & Gray, S. (2017). A Comparison of bootstrap confidence intervals for multi-level longitudinal data using Monte-Carlo simulation. In Chen, D. G., Chen, J. (Eds), Monte-Carlo Simulation-Based Statistical Modeling. New York: Springer. https://doi.org/10.1007/978-981-10-3307-0_17

Sankaran, M. (1970). The discrete Poisson-Lindley distribution. Biometrics, 26(1), 145-149. https://doi.org/10.2307/2529053

Sangnawakij, P. (2021). Confidence interval for the parameter of the zero-truncated Poisson distribution. The Journal of Applied Science, 20(2), 13-22. https://doi.org/10.14416/j.appsci.2021.02.002

Shanker, R., Fesshaye, H., Selvaraj S. & Yemane, A. (2015a). On zero-truncation of Poisson and Poisson-Lindley distributions and their applications, Biometrics & Biostatistics International Journal, 2(6), 168-181. https://doi.org/10.15406/bbij.2015.02.00045

Shanker, R., Fesshaye, H., Selvaraj, S. (2015b). On modeling of lifetimes data using exponential and Lindley distributions. Biometrics & Biostatistics International Journal, 2(5), 140-147. https://doi.org/10.15406/bbij.2015.02.00042

Shanker, R. (2017a). A zero-truncated Poisson-Amarendra distribution and its application. International Journal of Probability and Statistics, 6(4), 82-92. https://doi.org/10.15406/bbij.2016.04.00099

Shanker, R. (2017b). Zero-truncated Poisson-Akash distribution and its applications. American Journal of Mathematics and Statistics, 7(6), 227-236.

Shukla, K. K., Shanker, R., & Tiwari, M. K. (2020). Zero-truncated Poisson-Ishita distribution and its application. Journal of Scientific Research, 64(2), 287-294. https://doi.org/10.37398/JSR.2020.640240.

Siegel, A. F., & Wanger, M. R. (2022). Practical business statistics (8th ed.). Academic Press.

Turhan, N. S. (2020). Karl Pearson’s chi-square tests. Educational Research Review, 15(9), 575-580. https://doi.org/10.5897/ERR2019.3817.

Wood, M. (2004). Statistical inference using bootstrap confidence intervals. Significance, 1(4), 180-182. https://doi.org/10.1111/j.1740-9713.2004.00067.x

Downloads

Published

2023-08-30

How to Cite

Suriyakat, W. ., & Panichkitkosolkul, W. (2023). Nonparametric Bootstrap Confidence Intervals for The Population Mean of a Zero-Truncated Poisson-Lindley Distribution and Their Application. Journal of Current Science and Technology, 13(3), 725–733. https://doi.org/10.59796/jcst.V13N3.2023.1077

Issue

Section

Research Article

Categories