Bioactive and Multifunctional Wool Textiles Finishing with Diospyros mollis Griff. Extract

Authors

  • Pisutsaran Chitichotpanya Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Paholyothin Road, Klong Luang, Pathum Thani 12121, Thailand
  • Nattaya Vuthiganond Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Paholyothin Road, Klong Luang, Pathum Thani 12121, Thailand
  • Thitirat Inprasit Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Paholyothin Road, Klong Luang, Pathum Thani 12121, Thailand
  • Pimnara Chutasen Ekamai International School, 57 Ekamai 12, Sukhumvit 63, Klongton Nua, Vadhana, Bangkok 10110, Thailand

DOI:

https://doi.org/10.59796/jcst.V14N1.2024.3

Keywords:

Diospyros mollis Griff., Functional textile, Antibacterial activity, UV-protection, Wool, Response surface methodology

Abstract

Due to the sudden pandemic outbreak, there is a substantial demand for antimicrobial textiles for health and hygiene. Natural dyeing with plant sources has been proven to be an excellent eco-friendly method for producing healthcare textiles. In this study, Diospyros mollis Griff. extract was applied to the simultaneous dyeing and multi-functionalization (antibacterial activity and UV-protection) of wool fabrics. Response surface methodology was applied to optimize the treatment procedure and assess parameter interactions. The optimal result was achieved when dyeing at pH 4, dye concentration 25 g/L, temperature 88°C, and time 95 min. The dyed fabrics had good antibacterial activity against both E.coli and S.aureus (bacterial colony reduction > 90%), with E.coli being more pronounced. The UV protection factor (UPF) also reached the maximum (40+) level, demonstrating their superior UV protection. The finished wools are black, with high color strength (K/S > 9), good light and washing fastness, and fair to good crocking fastness. Thus, Diospyros mollis Griff. fruit extract can be used as a new bioactive agent for multifunctional textiles, as well as simultaneous black coloring.

References

Agnhage, T., Zhou, Y., Guan, J., Chen, G., Perwuelz, A., Behary, N., & Nierstrasz, V. (2017). Bioactive and multifunctional textile using plant-based madder dye: Characterization of UV protection ability and antibacterial activity. Fibers and polymers, 18, 2170–2175. https://doi.org/10.1007/s12221-017-7115-x

Alebeid, O. K., Pei, L., Elhassan, A., Zhou, W., & Wang, J. (2020). Cleaner dyeing and antibacterial activity of wool fabric using Henna dye modified with Acacia nilotica pods. Clean technologies and environmental policy, 22, 2223–2230. https://doi.org/10.1007/s10098-020-01951-7

Allafi, F., Hossain, M. S., Lalung, J., Shaah, M., Salehabadi, A., Ahmad, M. I., & Shadi, A. (2022). Advancements in applications of natural wool fiber. Journal of Natural Fibers, 19(2), 497-512. https://doi.org/10.1080/15440478.2020.1745128

Ayesh, M., Horrocks, A. R., & Kandola, B. K. (2022). The impact of atmospheric plasma/UV laser treatment on the chemical and physical properties of cotton and polyester fabrics. Fibers, 10(8), 66. https://doi.org/10.3390/fib10080066

Baig, U., Khatri, A., Ali, S., Sanbhal, N., Ishaque, F., & Junejo, N. (2021). Ultrasound-assisted dyeing of cotton fabric with natural dye extracted from marigold flower. The Journal of The Textile Institute, 112(5), 801-808. https://doi.org/10.1080/00405000.2020.1779907

Baseri, S. (2022). Sustainable dyeing of wool yarns with renewable sources. Environmental Science and Pollution Research, 29(35), 53238-53248. https://doi.org/10.1007/s11356-022-19629-6

Benkhaya, S., Rabet, S., & Harfi, A. E. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic chemistry communications, 115, Article 107891. https://doi.org/10.1016/j.inoche.2020.107891

Box, G. E. P., & Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the royal statistical society: series B, 13, 1-45. https://doi.org/10.1111/j.2517-6161.1951.tb00067.x

Chakraborty, L., Pandit, P., & Maulik, S. (2020). Acacia auriculiformis - A natural dye used for simultaneous coloration and functional finishing on textiles. Journal of cleaner production, 245, Article 118921. https://doi.org/10.1016/j.jclepro.2019.118921

Chitichotpanya, C., Khwanmuang, P., Yamprayoonswat, W., Porntheeraphat, S., Jongkaewwattana, A., & Chitichotpanya, P. (2022). Potent environmental-friendly virucidal medical textiles against coronavirus to combat infections during the COVID-19 pandemic. Journal of Industrial Textiles, 51(4_suppl), 6996S-7013S. https://doi.org/10.1177/15280837221094649

Dulo, B., Phan, K., Githaiga, J., Raes, K., & De Meester, S. (2021). Natural quinone dyes: a review on structure, extraction techniques, analysis and application potential. Waste and Biomass Valorization, 12(12), 6339-6374. https://doi.org/10.1007/s12649-021-01443-9

Fareed, N., El‐Kersh, D. M., Youssef, F. S., & Labib, R. M. (2022). Unveiling major ethnopharmacological aspects of genus Diospyros in context to its chemical diversity: A comprehensive overview. Journal of Food Biochemistry, 46(12), Article e14413. https://doi.org/10.1111/jfbc.14413

Grifoni, D., Roscigno, G., Falco, E. D., Vece, A., Camilli, F., Sabatini, F., ... & Zipoli, G. (2020). Evaluation of dyeing and UV protective properties on hemp fabric of aqueous extracts from vegetal matrices of different origin. Fibers and Polymers, 21, 1750-1759. https://doi.org/10.1007/s12221-020-1045-8

Haji, A. (2020). Natural dyeing of wool with henna and yarrow enhanced by plasma treatment and optimized with response surface methodology. The Journal of the Textile Institute, 111(4), 467-475. https://doi.org/10.1080/00405000.2019.1642710

Haji, A., & Naebe, M. (2020). Cleaner dyeing of textiles using plasma treatment and natural dyes: A review. Journal of cleaner production, 265, 121866. https://doi.org/10.1016/j.jclepro.2020.121866

Haji, A., & Rahimi, M. (2022). RSM optimization of wool dyeing with Berberis thunbergii DC leaves as a new source of natural dye. Journal of Natural Fibers, 19(8), 2785-2798. https://doi.org/10.1080/15440478.2020.1821293

Inprasit, T., Motina, K., Pisitsak, P., & Chitichotpanya, P. (2018). Dyeability and antibacterial finishing of hemp fabric using natural bioactive neem extract. Fibers and polymers, 19, 2121-2126. https://doi.org/10.1007/s12221-018-8518-z

Inprasit, T., Pukkao, J., Lertlaksameephan, N., Chuenchom, A., Motina, K., & Inprasit, W. (2020). Green dyeing and antibacterial treatment of hemp fabrics using Punica granatum peel extracts. International journal of polymer science, 2020, Article 6084127. https://doi.org/10.1155/2020/6084127

Mansour, R. (2018). Natural dyes and pigments: Extraction and applications. Handbook of renewable materials for coloration and finishing, 9, 75-102. https://doi.org/10.1002/9781119407850.ch5

Mongkholrattanasit, R., Cholachatpinyo, A., Tubtimthai, N., & Rungruangkitkrai, N. (2014). An evaluation of UV protection imparted by wool fabric dyed with natural dye from eucalyptus leaf. Chiang Mai Journal of Science, 41(5.2), 1208-1219.

Nambela, L., Haule, L. V., & Mgani, Q. (2020). A review on source, chemistry, green synthesis and application of textile colorants. Journal of Cleaner Production, 246, Article 119036. https://doi.org/10.1016/j.jclepro.2019.119036

Phuong, P., Quan, L. Phung, L., Linh, H., & Kien, T. (2020). Extraction of natural dye from Diospyros mollis (Griff.) fruits by many different solvents and application of dyed on silk fabric. Journal of science and technology, 44(2), 13-21. https://doi.org/10.46242/jst-iuh.v44i02.1025

Pisitsak, P., Hutakamol, J., Jeenapak, S., Wanmanee, P., Nuammaiphum, J., & Thongcharoen, R. (2016). Natural dyeing of cotton with Xylocarpus granatum bark extract: dyeing, fastness, and ultraviolet protection properties. Fibers and polymers, 17, 560-568. https://doi.org/10.1016/j.jclepro.2017.11.010

Pisitsak, P., Tungsombatvisit, N., & Singhanu, K. (2018). Utilization of waste protein from Antarctic krill oil production and natural dye to impart durable UV-properties to cotton textiles. Journal of cleaner production, 174, 1215-1223. https://doi.org/10.1016/j.jclepro.2017.11.010.

Rivas, M., Calaf, G. M., Laroze, D., Rojas, E., Mendez, J., Honeyman, J., & Araya, M. C. (2020). Solar ultraviolet A radiation and nonmelanoma skin cancer in Arica, Chile. Journal of Photochemistry and Photobiology B: Biology, 212, Article 112047. https://doi.org/10.1016/j.jphotobiol.2020.112047

Saber, D., & Abd El-Aziz, K. (2022). Advanced materials used in wearable health care devices and medical textiles in the battle against coronavirus (COVID-19): A review. Journal of Industrial Textiles, 51(1_suppl), 246S-271S. https://doi.org/10.1177/15280837211041771

Sadeghi-Kiakhani, M., Tehrani-Bagha, A. R., Safapour, S., Eshaghloo-Galugahi, S., & Etezad, S. M. (2021). Ultrasound-assisted extraction of natural dyes from Hawthorn fruits for dyeing polyamide fabric and study its fastness, antimicrobial, and antioxidant properties. Environment, Development and Sustainability, 23, 9163-9180. https://doi.org/10.1007/s10668-020-01017-0

Shabbir, M., Rather, L. J., Azam, M., Haque, Q. M. R., Khan, M. A., & Mohammad, F. (2020). Antibacterial functionalization and simultaneous coloration of wool fiber with the application of plant-based dyes. Journal of natural fibers, 17(3), 437-449. https://doi.org/10.1080/15440478.2018.1500336

Shabbir, M., Rather, L. J., & Mohammad, F. (2018). Economically viable UV-protective and antioxidant finishing of wool fabric dyed with Tagetes erecta flower extract: Valorization of marigold. Industrial Crops and Products, 119, 277-282. https://doi.org/10.1016/j.indcrop.2018.04.016

Shahid, M., & Mohammad, F. (2013). Recent advancements in natural dye applications: a review. Journal of cleaner production, 53, 310-331. https://doi.org/10.1016/j.jclepro.2013.03.031

Shahidi, S. (2014). Novel method for ultraviolet protection and flame retardancy of cotton fabrics by low-temperature plasma. Cellulose, 21, 757-768. https://doi.org/10.1007/s10570-013-0127-9

Shahid, M., Zhou, Y., Tang, R. C., Chen, G., & Wani, W. A. (2017). Colourful and antioxidant silk with chlorogenic acid: Process development and optimization by central composite design. Dyes and Pigments, 138, 30-38. https://doi.org/10.1016/j.dyepig.2016.11.012

Sinha, K., Aikat, K., Das, P., & Datta, S. (2016). Dyeing of modified cotton fiber with natural t erminalia arjuna dye: optimization of dyeing parameters using response surface methodology. Environmental Progress & Sustainable Energy, 35(3), 719-728. https://doi.org/10.1002/ep.12284

Suwama, T., Watanabe, K., Monthakantirat, O., Luecha, P., Noguchi, H., Watanabe, K., & Umehara, K. (2018). Naphthalene glycosides in the Thai medicinal plant Diospyros mollis. Journal of natural medicines, 72, 220-229. https://doi.org/10.1007/s11418-017-1134-1

Thi, H. P., Thi, L. H., Tran, T. H., & Thi, T. L. (2016). Research on dyeing process for polyamide with aqueous extracted from the fruits of Diospyros Mollis Giff. Journal of environmental science & engineering, 5, 385-389. https://doi.org/10.17265/2162-5263/2016.08.002

Vuthiganond, N., Nakpathom, M., & Mongkholrattanasit, R. (2020). Azoic deep dyeing of silk and UV protection using plant polyphenols and diazonium coupling. Fibers and Polymers, 21, 1052-1060. https://doi.org/10.1007/s12221-020-9057-y

Wang, F., Gong, J., Zhang, X., Ren, Y., & Zhang, J. (2018). Preparation of biocolorant and eco-dyeing derived from polyphenols based on laccase-catalyzed oxidative polymerization. Polymers, 10(2), 196. https://doi.org/10.3390/polym10020196

Yadav, S., Tiwari, K. S., Gupta, C., Tiwari, M. K., Khan, A., & Sonkar, S. P. (2022). A brief review on natural dyes, pigments: Recent advances and future perspectives. Results in Chemistry, 5, Article 100733. https://doi.org/10.1016/j.rechem.2022.100733

Yemiş, G. P., Yemiş, O., Drover, J. C., & Delaquis, P. (2022). Antibacterial activity of a polyphenol-rich haskap (Lonicera caerulea L.) extract and tannic acid against Cronobacter spp. Food Control, 140, Article 109120. https://doi.org/10.1016/j.foodcont.2022.109120

Yoshihira, K., Tezuka, M., Kanchanapee, P., & Natori, S. (1971). Naphthoquinone derivatives from the Ebenaceae. I. Diospyrol and the related naphthoquinones from Diospyros mollis Griff. Chemical & pharmaceutical bulletin, 19(11), 2271-2277. https://doi.org/10.1248/cpb.19.2271

Yu, C., Lu, Y., Tao, K., & Xi, Z. (2020). Optimization of the cationizing condition in salt‐free reactive dyeing of cotton fabric with the pad‐irradiate‐pad‐steam process using response surface methodology. Environmental Progress & Sustainable Energy, 39(3), Article e13341. https://doi.org/10.1002/ep.13341

Downloads

Published

2023-12-06

How to Cite

Chitichotpanya, P., Vuthiganond, N. ., Inprasit, T. ., & Chutasen, P. . (2023). Bioactive and Multifunctional Wool Textiles Finishing with Diospyros mollis Griff. Extract. Journal of Current Science and Technology, 14(1), Article 3. https://doi.org/10.59796/jcst.V14N1.2024.3

Issue

Section

Research Article

Categories