Survivability of Microencapsulation Probiotic Bacteria in Sodium Alginate-Goat Milk-β-Glucan Matrix under Freeze-drying Conditions for Dog Supplement
DOI:
https://doi.org/10.59796/jcst.V15N4.2025.141Keywords:
microencapsulation, probiotics, canine, alginate, goat milk, beta-glucan, Agrilactobacillus fermenti, Limosilactobacillus fermentum, Pediococcus pentosaceus, Gastrointestinal conditions, Freeze-dryingAbstract
The successful oral delivery of probiotics to the canine gastrointestinal tract necessitates protection against harsh environmental conditions. This study investigated the efficacy of a novel alginate-goat milk-beta-glucan matrix for the microencapsulation of three canine-associated lactic acid bacteria (LAB) strains: Agrilactobacillus fermenti Pom1, Limosilactobacillus fermentum Pom5, and Pediococcus pentosaceus Chi8. High encapsulation efficiencies (88.25% to 99.33%) were achieved across all strains and cocktails, indicating successful cell entrapment. Following freeze-drying and two months of storage, microencapsulation significantly enhanced the survival of all probiotic strains and cocktails compared to their unencapsulated counterparts. Furthermore, microencapsulated probiotics demonstrated superior resilience under simulated gastrointestinal conditions. While all cells initially maintained high viability in simulated oral conditions, encapsulation provided robust protection in simulated gastric fluid, where only encapsulated cells remained viable after
60 minutes, whereas free cells were completely inactivated. P. pentosaceus Chi8 exhibited the highest survival in gastric conditions (76.23% after 120 minutes at 2 months), and both encapsulated cocktails survived up to 180 minutes. Similarly, under simulated intestinal conditions, encapsulated cells consistently maintained significantly higher viability than free cells, with A. fermenti Pom1 showing 83.38% viability after 180 minutes at 2 months, compared to 0% for its unencapsulated form. This comprehensive evaluation of the alginate-goat milk-beta-glucan matrix for these specific canine LAB strains under freeze-drying, storage, and simulated gastrointestinal conditions represents a novel contribution. The findings underscore the potential of this matrix as an effective delivery system for canine probiotics, paving the way for the development of stable formulations aimed at improving canine gut health.
References
Agriopoulou, S., Smaoui, S., Chaari, M., Varzakas, T., Karaca, A. C., & Jafari, S. M. (2024). Encapsulation of probiotics within double/ multiple layer beads/carriers: A concise review. Molecules, 29(11), Article 2431. https://doi.org/10.3390/molecules29112431
ALKaisy, Q. H., Al‐Saadi, J. S., AL‐Rikabi, A. K. J., Altemimi, A. B., Hesarinejad, M. A., & Abedelmaksoud, T. G. (2023). Exploring the health benefits and functional properties of goat milk proteins. Food Science & Nutrition, 11(10), 5641–5656. https://doi.org/10.1002/fsn3.3531
Arellano-Ayala, K., Lim, J., Yeo, S., Bucheli, J. E. V., Todorov, S. D., Ji, Y., & Holzapfel, W. H. (2021). Rehydration before application improves functional properties of lyophilized Lactiplantibacillus plantarum HAC03. Microorganisms, 9, 1013–1034. https://doi.org/10.3390/microorganisms9051013
Atia, A., Gomaa, A., Fernandez, B., Subirade, M., & Fliss, I. (2017). Study and understanding behavior of alginate-inulin synbiotics beads for protection and delivery of antimicrobial-producing probiotics in colonic simulated conditions. Probiotics and Antimicrobial Proteins, 10, 157–167. https://doi.org/10.1007/s12602-017-9355-x
Chaudhari, S. A., Kar, J. R., & Singhal, R. S. (2015). Immobilization of proteins in alginate: Functional properties and applications. Current Organic Chemistry, 19, 1732–1754. https://doi.org/10.2174/1385272819666150429232110
Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., & del Carmen Villarán, M. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142(1-2), 185-189. https://doi.org/10.1016/j.ijfoodmicro.2010.06.022
Chonghan, Y. (2024). Development of new dog snacks impregnated with probiotic bacteria [Master’s thesis]. Graduate School, Srinakharinwirot University, Bangkok, Thailand.
Colin, C., Akpo, E., Perrin, A., Cornu, D., & Cambedouzou, J. (2024). Encapsulation in alginates hydrogels and controlled release: An overview. Molecules, 29(11), Article 2515. https://doi.org/10.3390/molecules29112515
Cook, M. T., Tzortzis, G., MacNaughtan, W., & Charalampopoulos, D. (2011). Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, 150(1), 1-13. https://doi.org/10.1016/j.jconrel.2010.11.003
Ding, W. K., & Shah, N. P. (2009). An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage. Journal of Food Science, 74(2), M53–M61. https://doi.org/10.1111/j.1750-3841.2008.01030.x
Eckert, C., Dall Agnol, W., Dallé, D., Serpa, V. G., Maciel, M. J., Lehn, D. N., & de Souza, C. F. V. (2018). Development of alginate-pectin microparticles with dairy whey using vibration technology: Effects of matrix composition on the protection of Lactobacillus spp. from adverse conditions. Food Research International, 113, 65-73. https://doi.org/10.1016/j.foodres.2018.07.001
Foongsawat, N., Sunthornthummas, S., Nantavisai, K., Surachat, K., Rangsiruji, A., Sarawaneeyaruk, S., Insian, K., Sukontasing, S., Suwannasai, N., & Pringsulaka, O. (2023a). Isolation, characterization, and comparative genomics of the novel potential probiotics from canine feces. Food Science of Animal Resources, 43(4), 685–702. https://doi.org/10.5851/kosfa.2023.e28
Foongsawat, N., Sunthornthummas, S., Rangsiruji, A., Sarawaneeyaruk, S., & Pringsulaka, O. (2023b). In vitro survival of microencapsulated canine-specific probiotics under simulated gastrointestinal tract conditions and during storage. Journal of Current Science and Technology, 13(3), 584-594. https://doi.org/10.59796/jcst.V13N3.2023.1121
Gopalakrishnan, N. K., Pappuswamy, M., Meganathan, G., Shanmugam, S., Pushparaj, K., Balasubramanian, B., & Kim, I. H. (2025). Influence of Probiotic Administration in Canine Feed: A Comprehensive Review. Veterinary Sciences, 12(5), Article 449. https://doi.org/10.3390/vetsci12050449
Guedes, J. S., Pimentel, T. C., Diniz-Silva, H. T., Almeida, E. T. D. C., Tavares, J. F., de Souza, E. L., Garcia, E. F., & Magnani, M. (2019). Protective effects of beta-glucan extracted from spent brewer yeast during freeze-drying, storage and exposure to simulated gastrointestinal conditions of probiotic lactobacilli. LWT, 116, Article 108496. https://doi.org/10.1016/j.lwt.2019.108496
Hardy, H., Harris, J., Lyon, E., Beal, J., & Foey, A. D. (2013). Probiotics, prebiotics and immunomodulation of gut mucosal defenses: homeostasis and immunopathology. Nutrients, 5(6), 1869–1912. https://doi.org/10.3390/nu5061869
Leong, A., Liu, Z., Almshawit, H., Zisu, B., Pillidge, C., Rochfort, S., & Gill, H. (2019). Oligosaccharides in goats' milk-based infant formula and their prebiotic and anti-infection properties. British Journal of Nutrition, 122(4), 441–449. https://doi.org/10.1017/S000711451900134X
Lodato, P., Segovia de Huergo, M., & Buera, M. P. (1999). Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices. Applied Microbiology and Biotechnology, 52, 215-220. https://doi.org/10.1007/s002530051511
Maciel, G. M., Chaves, K. S., Grosso, C. R. F., & Gigante, M. L. (2014). Microencapsulation of Lactobacillus acidophilus La-5 by spray-drying using sweet whey and skim milk as encapsulating materials. Journal of Dairy Science, 97(4), 1991-1998. https://doi.org/10.3168/jds.2013-7463
Mahmoud, M., Abdallah, N. A., El-Shafei, K., Tawfik, N. F., & El-Sayed, H. S. (2020). Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon, 6, Article e03541. https://doi.org/10.1016/j.heliyon.2020.e03541
Martín, M. J., Lara-Villoslada, F., Ruiz, M. A., & Morales, M. E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15–25. https://doi.org/10.1016/j.ifset.2014.09.010
Nag, A., & Das, S. (2013). Effect of trehalose and lactose as cryoprotectant during freeze‐drying, in vitro gastro‐intestinal transit and survival of microencapsulated freeze‐dried Lactobacillus casei 431 cells. International Journal of Dairy Technology, 66(2), 162-169. https://doi.org/10.1111/1471-0307.12041
Oberoi, K., Tolun, A., Sharma, K., & Sharma, S. (2019). Microencapsulation: An overview for the survival of probiotic bacteria. Journal of Microbiology, Biotechnology and Food Sciences, 9(3), 280–287. https://doi.org/10.15414/jmbfs.2019.9.2.280-287
Prasanna, P. H. P., & Charalampopoulos, D. (2018). Encapsulation of Bifidobacterium longum in alginate-dairy matrices and survival in simulated gastrointestinal conditions, refrigeration, cow milk and goat milk. Food Bioscience, 21, 72-79. https://doi.org/10.1016/j.fbio.2017.12.002
Shi, L.-E., Li, Z.-H., Li, D.-T., Xu, M., Chen, H.-Y., Zhang, Z.-L., & Tang, Z.-X. (2013). Encapsulation of probiotic Lactobacillus bulgaricus in alginate–milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. Journal of Food Engineering, 117(1), 99–104. https://doi.org/10.1016/j.jfoodeng.2013.02.012
Shu, G., Wang, Z., Chen, L., Wan, H., & Chen, H. (2018). Characterization of freeze-dried Lactobacillus acidophilus in goat milk powder and tablet: Optimization of the composite cryoprotectants and evaluation of storage stability at different temperature. LWT, 90, 70–76. https://doi.org/10.1016/j.lwt.2017.12.013
Sun, Q., Yin, S., He, Y., Cao, Y., & Jiang, C. (2023). Biomaterials and encapsulation techniques for probiotics: Current status and future prospects in biomedical applications. Nanomaterials, 13(15), Article 2185. https://doi.org/10.3390/nano13152185
Sun, W., & Griffiths, M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. International Journal of Food Microbiology, 61(1), 17-25. https://doi.org/10.1016/S0168-1605(00)00327-5
Xia, J., Cui, Y., Guo, Y., Liu, Y., Deng, B., Han, S. (2024). The function of probiotics and prebiotics on canine intestinal health and their evaluation criteria. Microorganisms, 12(6), Article 1248. https://doi.org/10.3390/microorganisms12061248
Zubair, W., Afzaal, M., Saeed, F., Ahmed, A., Ateeq, H., Akram, N., Abbas Shah, Y., Asghar, A., Manoharad, S., Nawaz, A., & Asres, D. F. (2023). Survivability of Lactobacillus rhamnosus under stressed conditions as affected by taro starch (Colocasia esculenta) encapsulation. International Journal of Food Properties, 26, 3465–3476. https://doi.org/10.1080/10942912.2023.2286892

Downloads
Published
How to Cite
License
Copyright (c) 2025 Journal of Current Science and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.