Study on Techno-Economic of Peak Shaving with Photovoltaic System and Battery Energy Storage System

Main Article Content

Somrot Injan
Kan Nakaiam
Nattawat Panlawan
Worrajak Muanggjai
Kittinun Srasuay
Teerasak Somsak

Abstract

This research evaluates the technical efficiency and economic viability of a solar cell system combined with a battery (PV-BESS) to reduce the peak demand by 10% from the original base of 770 kilowatts. The study employs a simulation of the BESS system with a capacity of 77 kilowatts/154 kilowatt-hours, alongside a dynamic investment analysis, considering the expected decrease in battery costs over the years. From 2024 to 2030, simulation results indicate that the system can reduce peak electricity demand by 77 kilowatts as targeted. Economically, the project is not yet considered an investment opportunity during this period. B.E. 2567-2572 (NPV < 0, IRR < 8%) The strategic breakeven point will occur in the year B.E. Prof. In 2573, when battery prices are expected to drop to 2,880 baht per kilowatt-hour, resulting in an internal rate of return (IRR) increasing to 8.65%, which is higher than the acceptable discount rate. In summary, although the PV-BESS system has high technical efficiency, the investment value depends on the timing relative to technology costs. The research therefore recommends a "Watchful Waiting" strategy to allow operators to decide on investment when market conditions are favorable.


Keywords:  Peak Shaving, Photovoltaic System, Battery Energy Storage System, Techno-economic Analysis, Investment Timing Peak Demand IRR NPV Strategic Break-even Point

Article Details

How to Cite
[1]
S. Injan, K. Nakaiam, N. Panlawan, W. Muanggjai, K. Srasuay, and T. Somsak, “Study on Techno-Economic of Peak Shaving with Photovoltaic System and Battery Energy Storage System”, TEEJ, vol. 5, no. 3, pp. 29–36, Nov. 2025.
Section
Research article

References

คณะกรรมการกำกับกิจการพลังงาน (กกพ.), "โครงสร้างและอัตราค่าไฟฟ้าของประเทศไทย," [Online]. Available: https://www.erc.or.th.

Accessed: Jun. 28, 2025.

กัญจน์ นาคเอี่ยม, "การลดค่าการใช้พลังงานไฟฟ้าสูงสุดด้วยเทคนิคการควบคุมการจ่ายพลังงานของอินเวอร์เตอร์ร่วมกับการทำนายการใช้ภาระทางไฟฟ้า ARIMA," วิทยานิพนธ์วิศวกรรมศาสตรมหาบัณฑิต, สาขาวิชาวิศวกรรมไฟฟ้า, คณะวิศวกรรมศาสตร์, มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา, 2562.

S.T.Aduda and F.M.Labeodan, "A Rule-Based Control Strategy for Peak Shaving with a Battery Energy Storage System in the Day-Ahead Market," in 2021 IEEE PES/IAS PowerAfrica, 2021.

J. Smith and A. Johnson, “Global energy challenges and peak demand management,”*Renewable and Sustainable Energy Reviews*, vol. 15, no. 3, pp. 1234-1245, 2021.

L.Chen,T. Wang, and Y. Li, “Impact of peak demand on power grid stability and greenhouse gas emissions,”*Energy Policy*, vol. 150, pp. 112001, 2022.

M.Davis and R.Brown,“The role of renewable energy and energy storage in peak shaving,” *Applied Energy*, vol. 300, pp. 117321, 2023.

P.White and K.Green, “Integration of PV and BESS for enhanced grid stability and peak load reduction,”*IEEE Transactions on Power Systems*, vol. 38, no. 1, pp.123-132, 2023.

Department of Alternative Energy Development and Efficiency (DEDE), *Thailand Energy Statistics 2023*, Ministry of Energy, 2023.

Electricity Generating Authority of Thailand (EGAT), *Power Development Plan (PDP) 2018-2037 (Revision 1)*, 2022.

S. Boonprasert and N. Chuangchai, “Peak shaving strategies for energy management in Thailand,” *Journal of Energy and Environment*, vol. 42, no. 2, pp. 87-96, 2024.

T. Panyasorn and C. Limcharoen, “Feasibility study of solar PV-BESS for peak shaving in Thai commercial buildings,” *Energy Reports*, vol. 9, pp. 2000-2009, 2023.

A. Z. Khan, “Techno-economic analysis of solar PV-battery storage systems for peak load shifting,” *Renewable Energy*, vol. 180, pp. 100-110, 2021.

B. Wang, “Challenges and opportunities in advanced modeling of PV-BESS for peak shaving,” *Energy Conversion and Management*, vol. 260, pp. 115500, 2022.

D. K. Sharma and S. R. Sharma, “Comparative analysis of control techniques for peak load management using hybrid renewable energy systems,” *Sustainable Energy Technologies and Assessments*, vol. 55, pp. 102923, 2023.

H. Li, “Economic evaluation of energy storage systems: A comprehensive review,” *Journal of Energy Storage*, vol. 50, pp. 104273, 2022.

International Energy Agency, "Global EV Outlook 2024," IEA, Paris, May 2024. [Online]. Available: https://www.iea.org/reports/global-ev-outlook-2024

International Energy Agency, "Batteries and Secure Energy Transitions," IEA, Paris, Apr. 2024. [Online]. Available: https://www.iea.org/reports/batteries-and-secure-energy-transitions

J. Chen and P. K. Larsen, "Future Cost and Performance Projections of Battery Technologies for Utility-Scale Energy Storage: A Review," in 2023 IEEE Power & Energy Society General Meeting (PESGM), Orlando, FL, USA, 2023, pp. 1-5.

A. K. Swain and S. K. Singh, "Techno-Economic Analysis of Battery Energy Storage Systems Considering Future Price Reductions for Grid Support," IEEE Transactions on Industry Applications, vol. 59, no. 1, pp. 245-255, Jan.-Feb. 2023.