Application of Lightweight Deep Learning Models for Plant Disease Classification via LINE Chatbot

Main Article Content

Jantana Panyavaraporn

Abstract

Smart farming is becoming increasingly important in Thailand, especially with advances in artificial intelligence (AI) technology that help reduce reliance on experts and accelerate plant disease diagnosis through leaf images. Therefore, this paper presents a performance comparison of different deep learning models, namely ResNet18, EfficientNet-B0, and MobileNetV3, in classifying cassava diseases using a five-class cassava leaf image dataset and tomato diseases using a ten-class tomato leaf image dataset. Experimental results show that EfficientNet-B0 achieved the highest accuracy and F1-score, followed by MobileNetV3 and ResNet18, respectively. After, EfficientNet-B0 was applied in real-time system, and a prototype was developed by integrating the EfficientNet-B0 model with a LINE chatbot. The system allows users to submit cassava or tomato leaf images and receive automated disease predictions with preliminary treatment recommendations via LINE. The results show that the system performs efficiently and has potential for smart agriculture in the future.

Article Details

How to Cite
[1]
J. Panyavaraporn, “Application of Lightweight Deep Learning Models for Plant Disease Classification via LINE Chatbot”, TEEJ, vol. 6, no. 1, pp. 1–9, Jan. 2026.
Section
Research article

References

สำนักงานพัฒนาการวิจัยการเกษตร (องค์การมหาชน), “พืชเศรษฐกิจ สินค้าสร้างรายได้ในครัวเรือนและประเทศ,” เข้าถึงทางhttps://www.arda.or.th/detail/6166

สำนักงานพัฒนาการวิจัยการเกษตร (องค์การมหาชน), “มะเขือเทศ: นิยาม ประวัติศาสตร์ และการเดินทางสู่ครัวโลก,” เข้าถึงทางhttps://www.arda.or.th/detail/6367

สันติ พรมคำ, “โรคและแมลงศัตรูของมันสำปะหลัง,” การจัดการความรู้เทคโนโลยีการผลิตมันสำปะหลังในพื้นที่ภาคกลางและภาคตะวันตก, หน้า 64-86, เข้าถึงทาง https://www.doa.go.th/share/attachment.php?aid=2912

F. Naveed and etc., “Sustainable AI for plant disease classification using ResNet18 in few-shot learning,” Array, vol 26, 2025, 100395.

T. Devi, K. Alice and N. Deepa, "Plant Disease Detection Using Enhanced EfficientNet Architecture in Comparison with DenseNet to Analyze the Severity in Leaves with Performance Measures," International Conference on Data Science, Agents & Artificial Intelligence, Chennai, India, 2022, pp. 1-5.

Ü. Atila, M. Uçar, K. Akyol and E. Uçar, “Plant leaf disease classification using EfficientNet deep learning model,” Ecological Informatics, vol. 61, 2021, 101182.

J. Feng, W. E. Ong, W. C. Teh and R. Zhang, "Enhanced Crop Disease Detection with EfficientNet Convolutional Group-Wise Transformer," IEEE Access, vol. 12, pp. 44147-44162, 2024.

S. B. S. and etc., "Plant Leaf Disease Detection and Classification Using MobileNetV3 and Wavelet Kernel Extreme Learning Machine," International Conference on Distributed Computing and Electrical Circuits and Electronics, India, 2024, pp. 1-6.

K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 770-778.

M. Tan and Q. Le. (2019). “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” International Conference on Machine Learning, 2019, pp. 6105-6114.

A. Howard et al., "Searching for MobileNetV3," International Conference on Computer Vision, Seoul, Korea (South), 2019, pp. 1314-1324.

N. Sankalana, access from: https://www.kaggle.com/datasets/nirmalsankalana/cassava-leaf-disease-classification

T. O.i Emmanuel, access from: https://www.kaggle.com/datasets/emmarex/plantdisease