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Abstract

The classification of banana bunch maturity represents a vital preliminary phase for maintaining fruit quality. However, prior studies
related to non-destructive maturity classification have predominantly focused on ready-to-sell finger bananas despite the application
of industrial-scale banana harvesting, which is done by bunches. This research aimed to categorize banana fruit bunches' ripeness status
before the harvesting process. The classification process distinguishes between two maturity levels (unripe and ripe) utilizing the model
comparison between Convolutional Neural Network (CNN), Visual Geometry Group (VGG) 16, and EfficientNet methodology. The
dataset comprises 500 banana bunch images for labeling purposes. The data was partitioned in a 4:1 ratio for training and testing. The
developed model utilizes CNN architecture that includes convolutional (Conv2D), pooling (MaxPooling2D), and fully connected
layers. Evaluation outcomes indicate that the model effectively classifies the maturity of banana bunches, demonstrating high accuracy,
precision, and recall. The conventional basic CNN resulted in the most optimal model among VGG16 and EfficientNet with precision
up to 91.11%. This CNN-based classification system is anticipated to be integrated into the banana industry, aiming to maintain the
harvested banana bunches. By employing CNN for classifying the maturity of banana bunches, the harvesting process can be made
more efficient with less time needed. Furthermore, the system enhances automation and consistency in product quality while decreasing
dependence on manual labor. Additionally, the classification outcomes can be directed towards appropriate processing pathways,
thereby facilitating the implementation of smart technology-driven postharvest systems over time.
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1. Introduction
1.1 Background

The fruit harvesting process represents a pivotal phase in the fresh banana sector [1]. As bananas are climacteric fruits with short
shelf lives, application of appropriate harvesting methods is essential to preserve the quality of bananas intended for sale [2]. These
methods encompass the effective assessment of the readiness of banana bunches for harvesting. The ripeness stage of bananas,
including the plantain and fresh banana type, influences the fruit's nutritional profile [3-4]. When the fruit is harvested during the pre-
ripening stage or is still in an unripe condition, the fruit contains high starch content and low sugar content. As the banana ripens, the
starch content will significantly decrease and the sugar content will conversely increase. Specifically, as the fruit ripens, there is also
an increase in the levels of ascorbic acid, phenolics, flavonoids, and beta carotene. While suitable post-harvest practices analysis can
sustain the physical integrity and texture of the fruit, it is imperative that the harvesting phase is executed with a non-destructive method
that has accuracy, taking into account the ripeness level of the fruit [5-6]. This practice could potentially minimise waste generated
during the post-harvest phase.

Conversely, the timing and justification behind fruit harvesting conducted by both small-scale and industrial-scale farmers continue
to follow traditional methods based on physical characteristics, coloration, and the age of the fruit since its blossoms [2, 7-8]. It is
estimated that the fruit is ready to be harvested around 12-13th months since plantation and 10-13 after flower emergence [9-10]. Since
this process depends on the skills of the harvesting personnel, it is susceptible to inaccuracies and requires more labour [8, 11]. On the
other hand, there is also a conventional harvesting process that includes calculating soluble solid content (SSC), pH, and firmness (FM)
in determining fruit quality, which is less efficient and cannot be applied to meet the demands of fast-paced market needs [12].
Consequently, there is a need for an alternative technology that can classify the ripeness of banana bunches with precision, accuracy,
and time efficiency.
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Image processing is one of the potential technological innovations in improving the efficiency of the precise ripeness classification.
The image processing techniques used digital images to classify the ripeness of banana bunches based on color, size, and texture.
Methods for this approach include MATLAB, convolutional neural networks, and machine learning algorithms [7, 13-16]. The image
processing approach uses a color segmentation process and calculation of the average intensity of colors in RGB values to classify the
maturity range [17-18]. The segmentation results will be used to build a model that will then be applied to image data from real objects.
The image processing approach is preferable to use because it can process the data with high accuracy, efficiency, and non-
destructiveness [11, 19].

Convolutional neural networks (CNNs), utilized as image processing techniques, facilitate the automatic extraction of the most
pertinent features, which proves advantageous in classification systems that necessitate the identification of subtle variations in ripeness
stages [20-22]. The CNN approach possesses the benefit of being robust against data variations, owing to its augmentation capabilities,
which can enhance its capacity to generalize across diverse datasets and conditions [23-24]. In comparison to alternative methods, such
as those that hybridize with Random Forest, CNN demonstrates a balanced level of accuracy, efficiency, and user-friendliness [25-26].

Several studies have been carried out regarding the application of CNN models in the classification systems for banana fruit [13,
23, 26-29]. The CNN methodology is utilized either as an independent technique or in conjunction with Support Vector Machine
(SVM), Random Forest, or optimization algorithms like the Adam optimizer. The modelling predominantly relies on training and
testing datasets comprising images of comb bananas, with a particular emphasis on post-harvest applications, including storage. In
contrast, actual industrial practices involve harvesting bananas in bunches. Therefore, it is essential to implement the CNN image
processing technique on datasets consisting of banana bunch images. The expected results of this study are intended to aid in the
creation of a classification model for banana bunch ripeness, which can proficiently tackle practical issues within the industry,
especially in evaluating the harvest condition of banana bunches.

1.2 Related works

Image processing is a widely used and developed method in determining the classification of an object. This method involves
manipulating and analyzing images to extract important information and categorize them into predefined classes. The image
classification process is divided into training and testing stages. This stage consists of image processing, feature extraction, and
application of machine learning algorithms [30-31]. Several types of image processing approaches have been used in the classification
of banana ripeness classes (Table 1).

Table 1 Image processing applications in banana ripeness classification

Reference Research objectives Dataset Category Method Accuracy
Widodo, et al. [11] Analyze the banana maturity 5 banana hands 2 levels (ripe and Image processing— R square
level using thermal images into 160 banana  unripe) thermal imaging
and its correlation with fingers
physical and chemical quality
Mutrofin, et al. [23] Analyze the application of Banana finger 4 levels (unripe, Shallow CNN + 99%
simple CNN-based automatic half-ripe, ripe, (RMSprop)
classification and comparison overripe)
with DenseNet20 and
VGGleé.
Ramadhan, et al. [13] Develop a Cavendish banana Banana 4 levels (unripe, General CNN with Optimizer Adam:
ripeness level identification Cavendish half-ripe, ripe, two optimizer 93.25%
system based on skin color finger overripe) treatments (Adam Optimizer SGD:
and SGD) 94.12%
Yashu, et al. [26] Develop a banana ripeness - - CNN + Random Total accuracy
detection using a combination Forest (86.97%), Presisi

of CNN and Random Forest

(81.97-91.37%),
Fl-score (87)

Sandra Prayogi, et al. Designing a color sensor- Banana Barlin 4 ripeness level rule-based RGB RL 1: 100%
[18] based banana ripeness fingers (RL): 1,3,5,dan 7 method RL 3: 80%
prediction tool RL 5: 100%
RL 7: 60%
Maity, et al. [16] Analyze and classify banana Banana fruit - MATLAB color -
ripeness based on image with features and
MATLAB. statistics
Mohamedon, et al. [32] Designing a mobile Banana fruit 3 levels (ripe, CNN EfficientNet- 98.25%
application for banana (mixed) unripe, overripe) Lite

ripeness identification

Han, et al. [33] Improving the accuracy of Hand banana 4 levels (unripe, CNN VGGl6 + CNN only: 85%
banana ripeness using a underripe, ripe, XgBoost CNN +XgBoost:
combination of features overripe) 91.25%
Arunima, et al. [29] Develop a CNN model for Banana 4 levels (unripe, CNN 95%
Nendran banana classification =~ Nendran medium ripe, ripe,
fingers overripe)
Raghavenra, et al. [34] Develop CNN sorting model Banana 4 levels (unripe, CNN dual channel 97.65%

with dual-channel CNN
system

Rashtali fingers

semi-ripe, ripe,
overripe)
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According to the identification of relevant studies presented in Table 1, it is evident that the CNN model ranks among the most
commonly utilized methods for classifying banana ripeness. The model's capability for automatic feature extraction is a significant
advantage [35-36]. This feature enables classification to occur without the inaccuracies that may arise from human involvement [37].
Nevertheless, in practical applications, it is essential to tailor the model to the specific type of object and the intended purpose of its
development.

Several research efforts have concentrated on categorizing the ripeness of bananas, predominantly employing banana fingers and
hands, with overarching goals directed towards prolonging the storage life of post-harvested fruits. Conversely, one particular study
utilizing banana hands seeks to assess the enhancement in the accuracy of the developed model through the incorporation of boosters.
Consequently, for the development of a classification model for banana bunch ripeness and its practical applications to support
harvesting efficiency, additional research is essential. The model's development must take into account the pre-processing phase, the
implementation of boosters, and the assessment of model performance.

2. Materials and methods

Research commenced with a literature review to gather information related to the banana harvesting process and identify specific
constraints in an industrial-scale production. Interviews with field staff confirmed the identified challenges and informed the existing
practice of the banana harvesting process. The research stages were organized to facilitate a solution to the confirmed challenges related
to the ripeness assessment of banana fruit bunches (Figure 1).
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Figure 1 Flow of the research stages

In the data acquisition stage, the dataset was sourced from Kaggle, uploaded by Krishna Kishor Kammaje under the title "Counting
and Weighing Bananas”. The Kaggle dataset is comprised of 713 picture frames. Data were selected to minimize duplication. Following
the principles of supervised learning, the data were categorized into two labels as the maturity stage of the banana bunches: ripe and
unripe. The image data underwent a preprocessing stage to standardize data attributes and remove the noise. Total image utilized was
consisted of 2 ripeness category with 250 images corresponding to each label category.

Data possessing uniform attributes is subsequently processed during the construction of three model; CNN, Visual Geometry Group
(VGG)16, and EfficientNet. For CNN model as the conventional structure, TensorFlow and Keras are utilized for the development of
the CNN architecture. The data undergoes processing using NumPy, Pandas, and PIL, enabling visualization through matplotlib.pyplot
and seaborn functionalities. The models and their corresponding labels are assessed using sklearn. The outcomes of the evaluation are
presented in terms of accuracy, precision, recall, and F-1 score. These metrics will indicate the performance level of the resultant model
and its appropriateness in addressing the requirements of the problem.

The VGG16 model is implemented by adopting the architecture of CNN with deeper application. Referring to the study by Gupta
et al. [38], the use of CNN is intended as a provider of basic structure, with in-depth views and complex patterns using the VGG model.
This approach is motivated by the question of how to improve the effectiveness of CNN performance on large image datasets [39]. The
VGG16 architecture consists of 16 weight layers organized like a CNN structure: an input layer, convolutional blocks 1-5, fully
connected layers, and pooling. For comparison, to determine the most suitable model for optimizing banana bunch maturity
classification, the EfficientNet model was also constructed. The architecture of this model adopts the basic architecture of CNN with
efficiency lying in the balance of scale and parameters.

2.1 Dataset Description

The dataset utilized in this research, sourced from Kaggle, comprises 713 images that were filtered to eliminate duplicates and
excessive noise, resulting in 250 images for each label category. The specific variety or cultivar represented in the dataset was not
specified by the original sources. Due to this condition, the label category was decided based on visual characteristics observed. The
label categories consisted of two ripeness stages; ripe fruit bunches and unripe fruit bunches. The original image data measured 920 x
1280 pixels and featured a non-uniform background, which was then standardized during the image pre-processing phase.

2.2 Image Pre-processing
The dataset's image data undergoes processing to remove the background and noise, resulting in a clear depiction of the banana

bunch object (Figure 2). The image is then resized to a consistent dimension of 480 x 640 pixels. The complete set of image data is
then labelled across the two label categories.
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Figure 2 Result of background and noise removal from banana bunch image data

The image data obtained has been labeled with mature and immature categories. The data is first segmented with a ratio of 4:1 for
training data (200 files) and testing data (50 files). Each layer is built linearly with Sequential and Keras tools and libraries. The features
are extracted from the image data by the convolution layer with the Conv2D tool. The feature dimensions are reduced to retain important
features with the MaxPooling2D tool. The feature results are then deformed from 2D pooled data to 1D vectors with the Flatten tool,
and the results are ready to enter the fully connected screen (Figure 4).
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Figure 4 CNN modelling process

The trained model was then analyzed through cutting stopping point testing to determine the level of fitting and avoid underfitting
or overfitting conditions. The test results yielded the most optimal model from the training process as well as the optimal number of
epochs for that model. The result of the fully connected layer is the classification of banana bunch ripeness, which consists of “ripe”
and “unripe.” Categorizing maturity into two types is based on the expected final goal of model implementation, which is to support
harvesting decisions. Therefore, simplifying the options provided will support accelerating harvesting decision-making. The test image
data that has been previously prepared is used to test the model through the model evaluation stage. The test results will determine the
classification accuracy of the resulting model.

2.3 Model evaluation

Model evaluation is carried out using the confusion matrix method, which is a table that compares the label recognition of the
categorization results with the actual category label [39]. The results of model testing with a confusion matrix will be shown in several
types of metrics, namely accuracy, precision, recall, and F1 score [40] as shown in Equation 1-4. The following equation is used to
determine the effectiveness of the CNN model with these metrics:

TP+TN

Accuracy = —————— (1)
TP+FP+FN+TN
. TP
Precision = —— 2)
TP+FP
TP
Recall = 3)
TP+FN
TP TP p L. R i
TP+FP X TP+FN recisionx Reca
F1Score = 2 xTEP _TRAEN — —_— 4)

L 4 Precision+Recall
TP+FP ' TP+FN



26 Agricultural and Biological Engineering 2026;3(1)

The Matplotlib.pyplot tool is used to plot a generalized graph representing the parameters assessed during the evaluation. is utilized
indirectly to feed the evaluation results into the visualization. Heatmaps are employed to offer a visual summary of the metrics for each
class.

3. Results and discussion

The developed CNN, VGG16, and EfficientNet model had detail structure showed in Table 2. The CNN model was built using the
Keras Sequential API with a total of 44,397,124 parameters, all of which are trainable. The architecture begins with three consecutive
convolutional blocks: Conv2D (32, 3x3) with ReLU activation for basic feature extraction, followed by Conv2D (64, 3x3) for more
complex pattern detection, and Conv2D (128, 3x3) for high-level feature representation. Each convolutional block is followed by
MaxPooling2D (2x2), which functionally to reduces the spatial dimensions to improve computational efficiency and translational
invariance. The Flatten layer converts a 3D tensor (height x width % channels) into a 1D vector with 86,528 features, creating a
significant bottleneck. A fully-connected layer Dense (512) with ReLU activation then processes this vector, resulting in 44,270,592
parameters (99.7% of the total model parameters), indicating massive parameter bloat. Dropout (0.5) is applied for regularization to
prevent overfitting by randomly deactivating 50% of neurons during training. The output layer uses Dense (2) with softmax activation
for binary classification (ripe or unripe), producing a probability distribution over both classes. The model is compiled using the Adam
optimizer, categorical crossentropy loss function, and accuracy metrics to monitor training performance.

Model VGG16 utilizes transfer learning with a base model pre-trained on the ImageNet dataset, having a total of 134,268,738
parameters with 119,564,050 trainable parameters (89%) and 14,714,688 frozen parameters. Implementation begins by loading the
VGGI16 base using keras.applications. VGG16 with detailed layers consisted of "weights='imagenet', parameter "include top=False",
and input shape dimention (224, 224, 3) with extracts 13 convolutional layers with a tiered convolutional block architecture
subsquently; 64, 128, 256, 512, and 512 filters. The parameter "include top=False" removes the original VGG16 fully-connected
layers, allowing for a custom classification head for the specific task of banana ripeness. The base model is unfrozen to retain the
learned features from ImageNet, resulting in output feature maps of size 7x7x512 (25,088 features). The custom classification head
starts with layer "Flatten()", which converts the feature maps into a one-dimensional vector, followed by "Dense(4096)" with ReLU
activation, yielding 102,764,544 parameters, and then "Dropout(0.5)" for regularization. The second Dense(4096) layer with ReLU
activation and Dropout(0.5) adds 16,781,312 parameters, creating a massive accumulation of parameters in the fully-connected layers
(89% of the total). The output layer Dense(2) with softmax activation produces classification probabilities, with a total of 119,545,856
parameters in the FC layers, indicating an extreme architectural bottleneck in the transfer learning implementation using compile with
the Adam optimizer and callbacks such as EarlyStopping and ModelCheckpoint utilized for monitoring training progress.

Furthermore,l the EfficientNet model employs transfer learning with a state-of-the-art, efficient architecture comprising a total of
4,214,309 parameters, of which only 164,482 (3.9%) are trainable, while 4,049,827 parameters remain frozen from the base model. It
is implemented using Keras applications and utilizes the compound scaling method to achieve an optimal balance in scaling depth,
width, and resolution. The base model contains 239 layers featuring Mobile Inverted Bottleneck Convolution (MBConv) blocks, which
incorporate depthwise separable convolutions for parameter efficiency and squeeze-and-excitation blocks for channel-wise feature
recalibration. The fine-tuning strategy involves unfreezing the last 50 layers via a for loop to adapt high-level features specifically to
the banana domain. The custom classification head begins with GlobalAveragePooling2D(), which transforms the feature maps
(7x7%1280) into a 1280-dimensional vector without introducing additional parameters, thereby avoiding the parameter inflation
associated with the Flatten-Dense architecture. This is followed by a Dense(128) layer with an L2 kernel regularizer,
BatchNormalization() for training stabilization and accelerated convergence, and Dropout(0.3) for regularization. A second Dense(128)
layer, also accompanied by BatchNormalization() and Dropout(0.3), enhances the model’s representational capacity, culminating in an
output Dense(2) layer with softmax activation. The model is compiled using the Adam optimizer and preprocessing function to
normalize pixel values based on ImageNet statistics. Additionally, the ReduceLROnPlateau callback is employed to adaptively adjust
the learning rate during training plateaus as shown in Table 2.

Table 2 Model architecture and structures analysis

Specification CNN VGG16 EfficientNet
Total Parameters 44,397,124 134,268,738 4,214,309
Trainable Parameters 44,397,122 119,564,050 164,482
Non-trainable Parameters 2 14,714,688 4,049,827
% Trainable 100.0% 89.0% 3.9%
Model Size (MB) 169.36 512.18 16.08
Base Model None VGG16 (ImageNet) EfficientNetB0
Parameter Distribution 99.7% in Dense layer 89% in FC layers Optimal (GAP used)
Main Bottleneck Flatten, Dense(512) Dense(4096) x2 Too few trainable
Uses Batch Norm No No Yes
Uses Dropout Yes Yes Yes

Based on the evaluation results of the model, it is evident that the built basic CNN model exhibits high values across all evaluation
variables (Table 3). The overall evaluation scores were derived from the best model and best epoch which resulted in 26 epochs. Out
of a total of 50 evaluations within the ripe category, true positive results were identified in 46 images, while false positives were
recorded in 4 images. As for the unripe category, 41 images were correctly identified and 9 were identified as the opposite. The
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evaluation results are also shown by the precision value of 91.11% for the unripe category and 83.63% for the ripe category. The recall
value of 82% in the immature category and 92% in the mature category shows that the model has the ability to remember and detect
positive data as a whole. Then the F1-score results, which show the balance between the level of precision and recall, resulted in
87.61% for the ripe category and 86.31% for the unripe category.

Table 3 Basic CNN Model evaluation result

Category Precision Recall F1-Score
Unripe 0911111 0.82 0.939591
Ripe 0.836364 0.92 0.876190
Accuracy 0.870000 0.87 0.870000
Macro average 0.873737 0.87 0.869674
Weighted average 0.873737 0.87 0.869674

A comparison analysis of the three models showed that the CNN achieved the best performance with an accuracy of 87.00% and
an F1-score of 86.97%, surpassing VGG16 (84.00%) and EfficientNet, which failed completely (50.00%). Analysis per model revealed
that the CNN model had an excellent balance between the Unripe (85.71% F1-score) and Ripe (88.46% F1-score) classes, while
EfficientNet showed extreme bias with an inability to detect the Unripe class (0% for all metrics). Model generalization shows Custom
CNN is superior with minimal overfitting of 0.58%, in contrast to VGG16, which experienced severe overfitting of 12.81% and training
collapse from a peak of 87.5% down to 81.25%.

Parameter efficiency proves conventional CNN achieves 1.96% accuracy per million parameters with 44.4M fully trainable
parameters, while VGG16 only achieves 0.63% with 119.6M parameters, and EfficientNet failed with 164K trainable parameters
(3.9%), which was insufficient. The size-performance trade-off shows that the Custom CNN, optimized with 169 MB, achieves 0.51%
accuracy per MB, compared to the VGG16's catastrophic 512 MB (0.16% per MB) and the EfficientNet's 16 MB, which is non-
functional. Training stability becomes a crucial differentiator, where the custom CNN converges stably after 26 epochs, VGG16
collapses after the 3rd epoch, and EfficientNet fails to learn, indicating fundamental implementation issues. The empirical paradox is
confirmed that sophisticated architecture does not guarantee superior performance without proper implementation, conversely
validating the principle that "simple but properly implemented" outperforms "complex but poorly tuned." The findings recommend
conventional CNN model as a baseline with 95% confidence, supported by excellent generalization, training stability, and proven
reliability despite architectural inefficiency. To be more detail, the CNN model evaluation result showed in Table 4.

Table 4 Model efficiency evaluation result

Efficiency Metric CNN VGG16 EficientNet
Accuracy per M Parameters 1.96% 0.63% 11.88%
Accuracy per MB Size 0.51% 0.16% 3.13%
Training Time 1.0x (baseline) 1.5x 0.8x
Inference Time (CPU) ~50ms ~250ms ~60ms
Memory Footprint (RAM) ~850MB ~2.5GB ~300MB

Overall, the precision metric of the model's performance which ranging from 83.63% to 91.11% effectively reflects the model's
readiness to classify the banana ripeness in the bunch shape image, which is related to the existing practice of banana harvesting. The
output form, reliability, and classification quality are positively affected by the resulting precision level. The precision metric illustrates
the degree of closeness among multiple measurements, which is crucial for elucidating random errors and their statistical variability
[41]. According to Rainio et al. [42], certain evaluation metric needed to assess the performance of supervised learning models. For
the purpose of this CNN model application, a high precision value indicates the accuracy of the classification so that the output has
minimal error. Consequently, it leads to an increase in efficiency, allowing classification tasks to be executed swiftly. The
implementation of this model is anticipated to considerably reduce the classification time required during banana bunch harvesting as
well as transform the manual and age-based determination.

Compared to the prior related works, the images of the bunches-shaped dataset used in this study already represent the real practices
in the industry. This condition supports the possibility of CNN model utilization as a non-destructive ripeness determination supporting
system. Therefore, this study classifies banana bunches into two primary ripeness stages: “ripe” and “unripe,” while the previous study
listed in Table 1 aims for a more granular classification of four or more stages (unripe, half-ripe, ripe, and overripe). This binary
classification is strategically aligned with the final aim to immediately determine the fruit that is ready to harvest. For this specific
application, a clear and simple category is often sufficient for the decision process, particularly for field operators.

A significant constraint of this research is the lack of precise information regarding the banana variety utilized and the
environmental factors considered in the training dataset. As different banana varieties (e.g., Cavendish, Plantain, Nendran, and Rashtali)
exhibit distinct morphological features and ripening characteristics, including unique color progressions, size, and skin textures, a CNN
model trained on an unidentified variety may not perform optimally or accurately when applied to images of other banana types. Same
as the environment-related factors that could bias the banana ripening characteristic in the captured image. Consequently, the
generalizability of the resulting CNN model to diverse banana cultivars remains untested, and its direct applicability is currently
confined to the specific, albeit unidentified, variety present in the used dataset.

This lack of specific varietal data also complicates direct comparative analysis with existing literature, where specific banana
varieties are often declared (Table 1). It is complicated to definitively ascertain if observed statistical performances are exclusively
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attributable to model architecture and training or if they are influenced by intrinsic visual and maturation attributes unique to the
unspecified cultivar within the utilized dataset. For future applied industrial implementation, a ripeness classification system
necessitates validation and dedicated training for established commercial banana cultivars.

4. Conclusions

This research has been conducted to fill the gap related to the development of a CNN model that can classify the maturity of banana
fruit in the form of bunches, adjusting with its long-term goal to support the efficiency of the harvesting process in the fresh banana
industry. The model achieves an accuracy rate of 87.37%, with the precision for each class category ranging from 83.63% to 91.11%.
It demonstrates readiness for practical application in classifying the ripeness of banana bunches in real-world scenarios. This study can
be improved by conducting research in a similar scope with the addition of factors that better reflect environmental conditions in the
field, such as lighting variables and shooting angles. However, a limitation of this research is the restricted dataset, indicating that
further studies are necessary, involving scientific collaboration with banana industry stakeholders and integration with the company's
secondary data to develop a more robust model.

To enhance the robustness and practical applicability of the developed model, future work should prioritize the collection of
meticulously documented datasets. This includes specifying the exact banana variety, systematically recording image acquisition
parameters (e.g., lighting, camera settings), and correlating visual ripeness cues with objective physico-chemical metrics (e.g., Brix,
firmness) across various maturity stages. Such controlled data collection will allow for the development of more generalizable and
industry-specific ripeness classification models.
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