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Abstract 

Air pollution causes a major global environmental 

challenge especially in industrialized regions such as the 

Eastern Economic Corridor (EEC) of Thailand. This study 

assesses the spatiotemporal trends of SO₂, NO₂ and CO 

concentrations in the EEC (2019–2022) using Sentinel-5P 

satellite data, ERA5 meteorological variables and 

machine learning models (Random Forest, XGBoost, 

LightGBM). Results revealed that pollutant fluctuations 

were significantly influenced by wind, aerosol index, 

surface pressure and dew point. XGBoost provided 

superior accuracy (R²: SO₂=0.95, NO₂=0.90, CO=0.96). 

The study demonstrates satellite and machine learning 

efficacy in air quality monitoring to identify pollution 

hotspots and critical environmental drivers. This is to 

support air quality management in Thailand. 

Keywords: Air pollution, SO₂, NO₂, CO, Sentinel-5P, 

Machine learning, Spatiotemporal analysis, EEC 

1. Introduction 

Thailand's Eastern Economic Corridor (EEC) is a 

government long-term 20 years strategy aimed at 

improving infrastructure, increasing investment and 

enhancing transportation and human development to 

transform the country into the higher income country. The 

goal of this initiative is to revitalize the eastern seaboard, 

specifically the provinces of Chachoengsao, Chonburi 

and Rayong by promoting innovative and high value 

industries. However, these industrial activities emit 

pollutants into the air, producing waste that threatens 

human health and the environment [1]. Manufacturing 

industries are especially problematic because they are 

energy intensive and emit large quantities of pollutants 

which leads to more severe air pollution compared to 

other sectors [2]. Furthermore, industrial emissions, 

construction and urban expansion contribute air pollution. 

Construction activities release particulate matter (PM), 

dust and other pollutants exacerbating air quality issues 

[3]. The rapid urbanization embodied by the development 

of new housing, commercial spaces, and infrastructure 

projects. This has led to increasing vehicular emissions 

and energy consumption which further degrading air 

quality [4].  

Air pollution poses significant risks to health of the 

public such as sulfur dioxide (SO₂), nitrogen dioxide 

(NO₂), and carbon monoxide (CO) are particularly 

concerning due to their adverse health effects. SO₂ can 

cause respiratory issues and aggravate heart and lung 

diseases. NO₂ irritates the respiratory system, leading to 

decreased lung function and higher risks of respiratory 

infections. CO is a dangerous gas inhibits the blood’s 

ability to transport oxygen resulting in symptoms from 

headaches to severe cardiovascular issues [5]. 

2. Research Method 

This study integrates remote sensing data from 

Sentinel 5p atmospheric data, ERA5 meteorological data 

and NASA SRTM product inquisition by Google earth 

code engine (GEE). After that, we used ground-based air 

quality monitoring to estimate air pollution by using three 

machine learning models: Random Forest Regression, 

XGBoost, and LightGBM. Thereafter, we implemented 

and evaluated using metrics. We also calculated the score 

of feature importance by Python. Finally, we generated 

models that help estimate air pollution levels and perform 

spatiotemporal patterns analysis. 

2.1 Data collection  

The main objective of this study was to monitor 

trends in SO₂, NO₂ and CO pollutants in EEC Thailand 

using Sentinel-5 images (TROPOMI) derived from GEE 

(1 January 2019 to 31 December 2022) as main variates 

in the inputs. Meanwhile, some other datasets are 

meteorological data using ERA-5 satellites derived from 

GEE, Which are adopted as auxiliary variates to enlarge 

the applicability of the trained models. In addition, the 

measurements from the Thailand Pollution Control 

Department are considered the ground truth values. 

2.1.1 Ground measurement data 

According to the Enhancement and Conservation of 

National Environmental Quality Act, B.E. 2535 [6], 

Thailand's Pollution Control Department (PCD) provides 

official annual reports on ambient air pollutant 

concentrations across the country to support the 

promotion and maintenance of environmental quality [7]. 

In this study, ground-based measurements of SO₂, NO₂ 

and CO from January 2019 to December 2022 were 

obtained from the PCD’s public database 

http://air4thai.pcd.go.th. 
SO₂ concentrations are measured using two principal 

methods; The Pararosaniline method and Ultraviolet 

Fluorescence. The Pararosaniline method involves 

absorbing SO₂ through potassium tetrachloromercurate 

solution to form a dichlorosulfitomercurate complex, 

which reacts with formaldehyde and pararosaniline to 
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produce methyl sulfonic acid, measurable at 548 nm. The 

UV Fluorescence method excites SO₂ with ultraviolet 

light, and fluorescence is emitted and detected at 190–230 

nm. These methods offer high sensitivity and are used to 

derive both 24-hour average and annual mean values [8]. 

NO₂ is measured primarily using the 

Chemiluminescence method, where ozone reacts with 

nitric oxide—converted from NO₂—resulting in light 

emission detected at wavelengths above 600 nm. 

Additionally, Cavity Attenuated Phase Shift (CAPS) 

Spectroscopy is employed, utilizing modulated light in an 

optical cavity to enable precise, real-time detection. 

Measurements are typically reported as 1-hour averages 

and annual means [9]. 

CO is measured using Non-Dispersive Infrared 

(NDIR) Detection which identifies CO by its absorption 

of infrared radiation at specific wavelengths. This 

technique is known for its high specificity and reliability 

with data commonly recorded as 8-hour averages. 

therefore, This method suitable for assessing short-term 

exposure levels [10]. 

During the study period, nine air quality monitoring 

stations were operational in the Eastern Economic 

Corridor (EEC) including five stations in Rayong, three in 

Chonburi and one in Chachoengsao. Due to this limited 

spatial distribution satellite remote sensing is used to 

complement the ground network, offering extensive 

spatial coverage. Furthermore, the presence of over 

13,000 factories across the EEC, as reported in the 2023–

2027 Master Plan for the Eastern Special Development 

Zone [11], underscores the necessity of satellite-

supported monitoring particularly in regions lacking 

sufficient ground-based measurement infrastructure. 

2.1.2 Remote sensing data 

Remote sensing data can be used as a valuable 

alternative tool for monitoring air pollution and can 

support decision makers as they can be employed in 

retrieving and mapping of air quality parameters in a 

synoptic and multi-temporal coverage at regular intervals 

and dynamic scale [12]. In this study, The TROPOMI 

instrument was aboard the Sentinel-5P and ERA-5 

satellite data integrated with google earth engine to 

analyze air quality data. 

Sentinel-5P operates across wavelengths ranging 

from UltraViolet (UV) to ShortWave InfraRed (SWIR). 

This hyperspectral spec-trometer provides daily high-

resolution observations of SO₂, NO₂, and CO using 

passive remote sensing techniques. The standard pixel 

size for the most spectral bands is 7×3.5 km², except for 

the UV1 band (7×28 km²) and SWIR bands (7×7 km²) 

[13]. Evaluations indicate that TROPOMI’s atmospheric 

products meet the mission’s accuracy requirements. In 

this study, annual mean data from January 2019 to 

December 2022 was collected by google earth code 

engine (GEE). All data was regraded into 10 km × 10 km 

grids using bilinear interpolation and main variables 

include "sulfurdioxide_total_vertical_column"(SO2), 

"nitrogendioxide_tropospheric_column" (NO2) and 

"CO_column_density"  (CO) with included the 

"absorbing_aerosol_index"(AAI) as an auxiliary variable. 

ERA5 is the fifth generation atmospheric reanalysis 

dataset that encompasses uncertainty information for all 

of the variables at reduced spatial and temporal 

resolutions [14]. The meteorological data were from the 

fifth generation European center for medium-range 

weather forecasts atmospheric reanalysis of the global 

climate (ERA5) produced by the Copernicus climate 

change service  included 2m temperature (TEM), 2m dew 

point temperature (DEW), 10m u-component of wind 

(UCOMPO) , 10m v-component of wind (VCOMPO), 

surface pressure (PRES), total evaporation (EVA). Land 

surface data the digital elevation model (DEM) and slope 

from the shuttle radar topography mission (STRM) digital 

elevation dataset from NASA SRTM V3 product (SRTM 

Plus).  

Model Training 

Model Training is a critical phase in machine learning 

that involves building models to recognize patterns and 

make predictions. This study used three models, Random 

Forest, LightGBM and XGBoost. They are commonly 

used due to their high accuracy and robustness in 

regression and classification tasks. These models rely on 

ensemble learning, where multiple decision trees or 

models are combined to enhance  performance and reduce 

overfitting. 

The input features included remote sensing variables 

as tropospheric concentrations of SO₂, NO₂, CO and AAI 

from the Sentinel-5P satellite. Meteorological auxiliary 

variables were sourced from the ERA5 reanalysis dataset 

including 2-meter air temperature, dew point temperature, 

surface pressure, 10-meter u- and v-component winds and 

total evaporation. Topographic variables including 

elevation and slope were derived from NASA’s Shuttle 

Radar Topography Mission (SRTM). All spatial datasets 

were standardized to a 10 km × 10 km resolution using 

bilinear interpolation to ensure consistency across 

variables. Because the coarsest resolution among the input 

variables was at 10 km. To ensure consistency across 

datasets and avoid introducing scale mismatches that 

Table 1 Data Collection 

Type 

Sources 

Dataset Index Spatial 

resolution 

Periods 

Remote 

sensing 

Data 
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could negatively affect model performance all input 

layers were resampled to this common resolution before 

model training. 

The output variable was the annual average 

concentration of each pollutant SO₂, NO₂, and CO. These 

predicted values were then used to generate spatial 

concentration maps by applying the trained models. The 

resulting maps visualized the estimated pollutant 

distribution across the entire study area analysis of air 

quality from 2019 to 2022. 

For model training and validation, ground-based 

pollution data served as the dependent variable (target 

label). All input features and target values were 

aggregated to annual averages to align temporal 

resolution and minimize the impact of short-term 

anomalies. The dataset spans from 2019 to 2022. A 10-

fold cross-validation approach was used to train the 

models, ensuring generalizability and reducing the risk of 

overfitting. 

2.2 Implementation and Evaluation Model 

In this study measures the predictive results using 

metrics, to evaluate the different models by classification 

performance at various levels by Mean Absolute Error 

(MAE), Root-Mean-Square Error (RMSE) and R-squared 

(R²) values.  

MAE=
1

n
∑n
i=1 |yi − y

^

i|  (1) 

 

MAE quantifies the difference between the predicted 

and actual values with lower values representing better 

performance. 

 

RMSE=√
1

n
∑n
i=1 (yi − y

^

i)
2

 (2) 

 

RMSE is particularly sensitive to large prediction 

errors within the training set, making it an important 

metric for evaluating the accuracy of predictions. A 

lower RMSE value indicates higher model performance. 

 

𝑅² = 1 − [𝛴 (𝑦ᵢ − ŷᵢ)² / 𝛴 (𝑦ᵢ − ȳ)²] (3) 

 

The R² score known as the coefficient of 

determination measures how well the predicted values 

align with the actual observed values. The score ranges 

from negative values to a maximum of 1. Higher values 

are supposed to indicate a better fit. A value closer to 1 

signifies stronger alignment between predictions and 

actual outcomes and reflects higher predictive accuracy. 

In this formula  𝑦ᵢ noted the actual value of the i-th data 

point. 𝑦̂ᵢ is the corresponding predicted value and 𝑦̅ 

represents the mean of the observed values in the dataset. 

Generally, R² values range between 0 and 1, where an R² 

of 0 implies that the model cannot predict the target 

variable. While an R² of 1 indicates good prediction. If the 

R² value is negative, it suggests that the model performs 

worse than simply using the mean of the target variable as 

the prediction  

3. Results and Discussion 

3.1 Analysis Spatiotemporal Patterns 

The average values shown in Figure 1 are derived 

from the model outputs which were generated by applying 

trained machine learning predictions. Annual mean 

concentrations of three air pollution from 2019 to 2022. 

Concentrations are reported in parts per billion (ppb). The 

concentration of sulfur dioxide (SO₂) shows slight 

fluctuations, starting at 2.41 ppb in 2019, decreasing to 

1.83 ppb in 2020, and then rising to 2.29 ppb in 2021 and 

2.6 ppb in 2022. Nitrogen dioxide (NO₂) concentrations 

remain relatively high and stable, starting at 12.22 ppb in 

2019, slightly decreasing to 11 ppb in 2020, then 

increasing to 11.81 ppb in 2021 and slightly decreasing to 

11.16 ppb in 2022.Carbon monoxide (CO) shows lower 

values overall, with a decreasing trend from 0.59 ppb in 

2019 to 0.43 ppb in 2022.  

 

 
Fig. 1 Average annual concentration of SO₂, NO₂, and CO 

3.2 Machine Learning Models Performance 

The predictive performance of the three machine 

learning models XGBoost, LightGBM and Random 

Forest was assessed using 10-fold cross-validation across 

SO₂, NO₂, and CO datasets. The evaluation was based on 

standard regression metrics, including R², Mean Absolute 

Error (MAE), and Root Mean Square Error (RMSE). 

For all three pollutants, XGBoost consistently 

exhibited the highest predictive accuracy with superior 

alignment between predicted and observed values and the 

lowest error rates. The model’s ability to handle complex 

nonlinear relationships contributed to its robustness and 

generalizability. 

In the case of SO₂, XGBoost achieved the best 

performance as reflected in its tight clustering of predicted 

values around the ideal regression line and minimal 

residuals. LightGBM also performed well although its 

predictions displayed slightly greater dispersion. Random 

Forest showed higher variability in predictions and 

indicating a relatively reduced capacity to generalize in 

the presence of complex spatial patterns as shown in 

figure 2.  

For NO₂, XGBoost again yielded the most precise 

results, followed by LightGBM. Random Forest exhibited 

the widest distribution of errors, suggesting limitations in 
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capturing temporal variability and feature interactions as 

shown in figure 3.  

 

 

(a) 

 

(b) 

 

(C) 

Fig. 2 (a) XGBoost (b) LightGBM (c) Random Forest 
SO₂ predicted and actual values 

 

In predicting CO concentrations, XGBoost 

maintained its leading performance which particularly in 

capturing both high and low concentration values with 

minimal error. LightGBM provided similar but slightly 

less consistent results, whereas Random Forest revealed 

pronounced deviations, especially in lower concentration 

ranges as shown in figure 4. 

 

 

(a) 

 

(b) 

 
(C) 

Fig. 3 (a) XGBoost (b) LightGBM (c) Random Forest 

NO₂ predicted and actual values 
 

 

(a) 
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(b) 

 
(C) 

Fig. 4 (a) XGBoost (b) LightGBM (c) Random Forest 

CO predicted and actual values 

The comparative results presented in Table 2 and 

Table 3 further support the conclusion that XGBoost 

outperforms the other models in terms of both training and 

testing accuracy. This underscores the suitability of 

gradient boosting frameworks for spatiotemporal air 

quality prediction tasks, particularly in settings 

characterized by complex environmental interactions. 

Table 2 Accuracy of Model training data 

Air 

Pollutant 
Model 

Training 

R² 

Training 

MAE 

Training 

RMSE 

SO2 XGBoost 0.999997 0.000781 0.001077 

SO2 RF 0.983212 0.039601 0.076615 

SO2 LightGBM 0.998828 0.009218 0.020243 

NO2 XGBoost 0.999999 0.00067 0.000965 

NO2 RF 0.984405 0.044299 0.104433 

NO2 LightGBM 0.972398 0.060471 0.138935 

CO XGBoost 0.998616 0.000438 0.00058 

CO RF 0.980857 0.000973 0.002158 

CO LightGBM 0.997722 0.000338 0.000745 

Table 3 Accuracy of Model testing data 

Air 

Pollutant 
Model 

Testing  

R² 

Testing 

MAE 

Testing 

RMSE 

SO2 XGBoost 0.957113 0.080417 0.128924 

SO2 RF 0.944955 0.075459 0.146058 

SO2 LightGBM 0.94994 0.08287 0.139287 

NO2 XGBoost 0.904464 0.125868 0.244183 

NO2 RF 0.938802 0.08913 0.195435 

NO2 LightGBM 0.937142 0.112321 0.198067 

CO XGBoost 0.966192 0.002073 0.003288 

CO RF 0.959723 0.001824 0.003589 

CO LightGBM 0.917175 0.002419 0.005147 

Early studies [15] and [16] used OMI data with 

random forest spatiotemporal kriging (RF-STK) and 

Random Forest with Kriging (RF-K) models achieving 

moderate CV-R² values ranging from 0.62 to 0.78. 

Reference [17] shows RF–STK model using 

Measurements of Pollution in the Troposphere CO 

retrievals (MOPITT) data achieving a CV-R² of 0.51. This 

early work was limited by spatial resolution and data 

quality. Reference [18] shows LightGBM model with 

Sentinel-5P data to estimate CO concentrations with a 

CV-R² of 0.71 and RMSE of 0.26. Reference [19] 

employed the Space Time Extra Trees (STET) model with 

big data to estimate NO₂, SO₂, and CO achieving high 

predictive accuracy with CV-R² values 0.84 and 

highlighted the potential of combining ground 

observations with reanalysis data to address gaps in 

satellite coverage. Nested XGBoost models in study [20] 

have also shown exceptional performance in predicting 

NO₂, achieving an CV- R² of 0.93 and RMSE of 4.19. 

Neural Networks PCA hybrid models as demonstrated in 

[21] enhanced the accuracy of  SO₂ achieving CV-R² = 

0.976 with OMI data. This approach significantly 

improved data quality for polluted areas by reducing 

noise. These advancements have improved air quality 

monitoring. Machine learning models often struggle to 

generalize across diverse geographies necessitating 

region specific adaptations. Validation with ground-based 

measurements remains critical to ensuring model 

reliability. 

3.3 Feature Importance 

Among all the pollutant models wind components, 

surface pressure, and dew point were identified as the 

main factors affecting air pollution levels. Wind patterns, 

especially the U component, had the most significant 

impact on CO and NO₂, highlighting the importance of 

atmospheric circulation in spreading pollutants. On the 

other hand, evaporation and the digital elevation model 

(DEM) play an important role in SO₂ levels, showing that 

the shape of the land and water are key factors in how SO₂ 

spreads. These results are illustrated by the average 

feature importance values shown in Figure 5 , which 

highlights the key environmental factors affecting 

pollution in the EEC. 

In summary, across all pollutant models, atmospheric 

circulation, particularly the U component of wind, 

emerged as the most influential driver of pollution 

dispersion in the EEC. The effect of surface pressure and 

dew point was similar to all the models. The role of 

topography and evaporation was more prominent in SO₂ 

predictions, indicating that localized geographic and 

hydrological factors play a more significant role in certain 

pollutant dynamics. These can inform targeted high 

pollution control such as focusing on areas with high 

industrial and vehicular activity during periods of low 

wind speed or high atmospheric pressure. 

3.4 Spatiotemporal Concentration map 

The spatiotemporal distribution of sulfur dioxide 

(SO₂) concentrations over the Eastern Economic Corridor 
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(EEC) of Thailand was analyzed from 2019 to 2022 using 

Sentinel-5P TROPOMI data integrated with ERA5 and 

NASASRTM by the most accurate model XGBoost 

generated into concentration map.  

SO₂ is primarily emitted from industrial activities, 

power plants, and vehicular traffic making it a key 

indicator of air quality. In this study annual maps were 

generated to visualize changes in SO₂ concentrations 

across the study area. The spatial and temporal analysis of 

SO₂ concentrations from 2019 to 2022 reveals a general 

decline in pollution levels across the EEC with occasional 

fluctuations. Chachoengsao consistently exhibited higher 

concentrations throughout the study period as shown in 

figure 6. 

The NO₂ concentrations from 2019 to 2022 

Chachoengsao consistently emerges as the most polluted 

province, with NO₂ concentrations peaking in 2021. The 

decrease observation in 2022 suggests some 

improvements in air quality likely due to regulatory 

actions or changing industrial activity levels. The 

pollution hotspots in Chachoengsao and Chon Buri linked 

with the relatively low levels in Rayong show the 

differences in NO₂ pollution levels across the EEC. As 

shown in figure 7. The concentration of CO pollutant 

concentrations from 2019 to 2022 showed a decreasing 

trend across the study area. The northern areas of 

Chachoengsao consistently have the highest 

concentrations of CO, but the overall intensity of 

pollution has significantly declined since 2019. As shown 

in figure 8. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5 (a) SO₂  (b) NO₂ (c) CO feature importance 

Performance of pollutants factors 

4. Conclusion and Suggestions 

This study utilized multisource remote sensing data 

and machine learning algorithms (XGBoost, Random 

Forest regression, and LightGBM) to model and predict 

air pollution trends, explicitly focusing on SO₂, NO₂, and 

CO concentrations in the Eastern Economic Corridor 

(EEC) of Thailand from 2019 to 2022 by combining 

atmospheric data from Sentinel-5P and meteorological 

data from ERA5 and NASA SRTM products. Also, it can 

be summarized based on the three main objectives.  

1) Feature Importance The key factors influencing air 

pollution were identified. Across all models, wind 

components, surface pressure and dew point emerged as 

the most critical predictors. XGBoost and Random Forest 

regression showed that the U component of wind, surface 

pressure and dew point were particularly influential for 

NO₂ and CO concentrations, highlighting the role of 

atmospheric circulation in pollutant distribution. For SO₂, 

features like evaporation and digital elevation model 

(DEM) were more significant, suggesting that 

topographical and hydrological factors are important for 

SO₂ dispersion.  

2) Model Performance Using satellite imagery data 

and environmental data predictive models were developed 

to estimate SO₂, NO₂, and CO levels. The XGBoost model 

demonstrated the highest accuracy, outperforming the 

other models in terms of R², RMSE, and MAE metrics.  

R² values of 0.95 for SO₂, 0.90 for NO₂, and 0.96 for CO 

confirm that it is more accurate than Random Forest 

regression and LightGBM in this study. Although the 

model’s performance varied depending on the pollutant 

and the study area, the results are consistent with other 

studies that found XGBoost to be highly effective for 

environmental modeling tasks. 

 3) The analysis of SO₂, NO₂ and CO air pollution 

concentrations showed that high pollutant concentrations 

were found in industrial zones especially in 

Chachoengsao and Rayong provinces. This study 

emphasized the role of industrial activity in contributing 

to pollution levels. The temporal trends indicated a 

decline in CO levels in 2020. This is primarily attributed 

to reduced industrial activity and transportation during the 
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COVID-19 pandemic. SO₂ and NO₂ followed similar 

declining trends in industrial areas. 

Future air quality modeling can be significantly 

enhanced by leveraging higher-resolution satellite data 

advanced machine learning techniques and expanded 

environmental datasets. High-resolution satellite imagery 

offers more granular insights, enabling precise 

identification of pollution hotspots at the neighborhood or 

factory level, rather than generalizing pollutant levels 

across large regions. This finer spatial detail is crucial for 

urban and industrial pollution management. Advanced 

machine learning models deep learning could improve the 

capture of complex spatiotemporal patterns, surpassing 

the capabilities of XGBoost. Hybrid approaches that 

integrate physical and machine learning models hold 

promise for deeper insights into pollutant interactions 

with environmental factors. 

Future research could also bridge air pollution 

analysis with health data to evaluate the impacts of 

pollution on public health. By correlating pollutant levels 

with health outcomes, policymakers can design targeted 

interventions, enforce emission regulations and raise 

public awareness, ultimately improving health and well-

being in affected regions. 
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Fig. 6 (a)-(d) SO₂ Concentrations map trends from 2019-2022 
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Fig. 7 (a)-(d) NO₂ Concentrations map trends from 2019-2022 
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Fig. 8 (a)-(d) CO Concentrations map trends from 2019-2022 
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