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Abstract

This research paper presents the application of the K-Nearest
Neighbors (KNN) algorithm as a regression model for numerical
prediction. We propose for KNN regression as a viable alternative for
scenarios characterized by non-linear or ambiguously linear data
relationships, where conventional linear regression models frequently
underperform. Our experimental findings concentrate on evaluating the
efficiency of KNN regression in comparison to established models such
as multiple linear regression across five datasets. This illustrates the
capability of KNN regression to achieve more accurate numerical
predictions. In addition, we explore the effects of distance metrics, the
inverse distance weighting (IDW) method for neighbor weighting, and
K-value selection (number of neighbors) in our in-depth parameter tuning
for KNN regression. The results suggest that KNN regression is an
efficient and compelling alternative regression model for numerical
prediction, particularly when dealing with complicated data and
ambiguous linear correlations. Thus relieves the need for more complex

models like artificial neural networks.
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