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Abstract

This research presents a comparative study of Convolutional
Neural Network (CNN) architectures for Thai accent classification. It
contrasts a parallel architecture based on [1] VFNet: A Convolutional
Architecture for Accent Classification, which uses multi-size filters
simultaneously, with a sequential architecture that stacks different
kernel sizes across layers (e.g., 3—>5—>7). The input features are Mel-
Frequency Cepstral Coefficients (MFCCs) extracted from the Thai
Dialect Corpus [2]. Experimental results show that both models achieve
comparable accuracy and F1-scores. However, further analysis reveals

that sequential models such as 5—>5—>5 and 7—>5—>3 outperform

the VFNet-based parallel architecture in terms of lower parameter count
and cross-entropy loss. A detailed 2D receptive field (RF) analysis also
indicates that architectures with moderate RF sizes tend to deliver better
classification performance compared to those with very small or
excessively large RFs. These findings emphasize the practical
advantages of well-structured sequential CNNs for real-world

deployment under computational and memory constraints.
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