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Volume Deep Face: A 3D Face Descriptor for Face Authentication System
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Abstract
In this paper, we introduce the Volume Deep Face

(VDF), a novel face representation proposed for the face
authentication system. VDF provides a fast and compact
representation of faces using deep learning, enabling one
to encode more distinctive features. Using our proposed
method, images can be generated to form a 3D VDF
representation or a 2D face descriptor (2DFD). The 3D
VDF is created from multiple images in the training set,
while the 2DFD is generated from a single image during the
testing phase. The matching confidence is evaluated using
our new volume matching. Our face authentication system
is verified with extensive experiments in the XM2VTS
database.
Keywords: Face Authentication, Face Descriptor, Convo-
lutional Neural Networks, Volume Deep Face

1. Introduction
Image representation plays a crucial role in the face

authentication system [1, 2, 3, 4, 7, 13, 14, 15, 18]. They
provide rich information in which the transformed space
is more distinctive than the image space. Due to the sim-
ilar structure of face images, it is very hard to recognize
the faces directly on image space. In addition, the gray
level of human face images normally changes from time to
time, resulting in a degradation of the performance of the
face authentication system. Eigenfaces and Fisherfaces are
among the most common methods for face representation
in which the dimensionality of the data is reduced while
minimizing the variance within the class [1, 2]. The local
binary pattern (LBP) was also a popular method proposed
for face representation with the ability to enhance the gray
level of face images [3]. LBP measures the difference be-
tween the central pixel and its neighbors, and then encodes
the changes as a binary number. LBP enhances robustness
against illumination changes. Eigenfaces, Fisherfaces, and
LBP can be categorized as hand-crafted feature extraction
methods. The core strength of the convolutional neural
network lies in its ability to extract useful features using
the convolution operator [6, 7, 9, 10, 11, 12, 16, 17, 20].
CNN provides a dual mode that works both as a classifier
and as a feature extractor. In this paper, we propose a novel
face representation, termed a volume-deep face (VDF),
which is constructed from multiple 2D face descriptors.
We also propose a robust method for face and eye detec-

tions. The original contributions of this paper are: 1) It
generates the face representation in both 2D and 3D forms,
which provides the capability of constructing distinctive
features. 2) It proposes robust 3D volume matching for
face authentication.

2. The Proposed Face Authentication System
2.1 Overview of the System

An overview of our proposed face authentication sys-
tem is shown in Fig. 1. In the training phase, we first
detect the face and eye using two-stage face and eye detec-
tions, 2SYOLO. The eye positions are then used to align
the face in which the degree of rotation of the two eyes
is zero. The face is then cropped to the normalized size
130 × 200. The aligned and cropped faces are then fed to
the CNNs where VDF is generated. In the test phase, a
similar 2SYOLO process is performed to obtain an aligned
and cropped face. 2DFD is created from a single image
for testing. The volume matching is used to measure the
similarity between VDF and 2DFD, resulting in true or
false identity. This unified pipeline ensures that the same
preprocessing steps are applied consistently across both
training and testing, reducing variability and increasing
robustness. Furthermore, the framework can be efficiently
extended to real-time applications, making it suitable for
deployment in practical security systems.
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Fig. 1. The framework has two phases: (1) training, where a 3D VDF
tensor is constructed; and (2) testing, where a 2DFD is generated and
matched against the stored VDF for face authentication.
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Fig. 2. Architecture of our two-stage YOLO-based approach for face and
eye detection.

2.2 Face Detection and Alignment
The performance of a face authentication system can

be improved by precisely locating and aligning facial com-
ponents [19]. In particular, aligning human eyes across
all face images ensures that key facial components are
consistently positioned, enabling more reliable and accu-
rate face verification. We introduce 2SYOLO, a two-stage
YOLO-based approach for face and eye detection. YOLO
provides real-time speed, easy fine-tuning and training, and
clean two-stage (face→eyes) alignment; the pipeline does
not depend on one specific face detector. Therefore, our
method is not limited to YOLO; other detectors such as
RetinaFace [23] or MTCNN [24] can also be integrated
into the same pipeline. In the first stage, the face bounding
boxes are located using YOLO-Face. In the second stage,
eyes are localized within each detected face bounding box
using YOLO-Eyes. Based on the detected eye positions, the
face is then horizontally aligned to ensure that facial com-
ponents are consistently positioned across all entire dataset.
YOLO-Face is trained on face images, while YOLO-Eyes
is trained specifically on eye region images to accurately
detect eye positions within the detected face bounding
boxes. Our two-stage YOLO-based approach is illustrated
in Fig. 2 which has the following parts [8]: a backbone, a
neck and a head. The backbone is responsible for feature
extraction and handles most of the network computation.
The neck aggregates features from various stages of the
backbone, enhancing the network’s ability to detect objects
at multiple scale. Finally, the head generates the model’s
predictions based on the combined features.

2.3 2D Face Descriptor with Deep Learning
Convolutional neural networks (CNNs) were developed

for more than two decades beginning with the introduction
of LeNet architecture [10, 11, 12, 18, 13]. CNNs are a
special type of multi-layer neural networks in which con-
volution operations are used to extract distinctive features
from input images. Therefore, raw images are not fed
directly from one layer to the next, but are transformed by
convolution operations before being forward. Extensive

empirical evidence shows that deeper CNNs architectures
produced greater performance [10, 11]. CNNs are com-
posed of multiple layers including feature extractors (e.g.,
convolution operation), dimensionality reduction (e.g., max
pooling) and classification layers (e.g., fully connected and
softmax layers) [6]. The cropped and aligned face images
resulting from the previous section are color images with
the size of 𝑊 × 𝐻, where 𝑊 = 130 and 𝐻 = 200 in our
implementation. Therefore, input image is represented as
a tensor 𝐼 ∈ Z𝑊×𝐻×𝐶 and is fed to the CNNs with shape
𝑊 × 𝐻 × 𝐶, where 𝑊 and 𝐻 are width and height of an
image and 𝐶 is the number of channels, i.e. 𝐶 = 3 for RGB
images. Normally, the outputs of CNNs are produced by
softmax layer. One can define CNNs as a 𝐾 class probabil-
ity distribution where the output is maximized at index 𝑘 𝑡ℎ
if and only if 𝑘 𝑡ℎ class is identical to the identified object.
Let us define by 𝑣 𝑗 the target of CNNs classification where
𝑗 is the index of class 𝑗 𝑡ℎ. By minimizing [10, 11, 12]

𝜎(y) 𝑗 − 𝑣 𝑗

 ;∀ 𝑗 ∈ 𝐾, (1)

for 𝐾 class problem, the CNNs is converged. 𝜎(y) 𝑗 is a
softmax probability and can be described by [11]

𝜎(y) 𝑗 =
𝑒𝑦 𝑗∑𝐾
𝑘=1 𝑒

𝑦𝑘
; 𝑗 = 1, . . . , 𝐾. (2)

𝑦 𝑗 is a fully connected layer where all neurons from the
previous layer are connected with weights to the next layer,
hence the term fully connected (FC). Let us define by
𝐹𝐶 (𝑥), the output of the fully connected layer with [10]

𝐹𝐶 (𝑥) = 𝑎(𝑊𝑥 + 𝑏) ∈ R𝑚. (3)

where 𝑎(·) is an activation function. 𝐹𝐶 (𝑥) is fully con-
nected with 𝑛 inputs from the previous neuron layer and
𝑚 output dimensions, computed using a trainable weight
matrix 𝑊 ∈ R𝑚×𝑛 and bias vector 𝑏 ∈ R𝑚. Typically,
the activation function 𝑎(·) used in CNNs is a nonlinear
rectified linear unit (ReLU) which is defined by [12]

𝑎(𝑢) = max(0, 𝑢), 𝑢 ∈ R, (4)

It is easy to prove that 𝑎′ (𝑢) = 1 for 𝑢 > 0 and that
𝑎′ (𝑢) = 0 for 𝑢 < 0. ReLU has an advantage over tradition-
ally sigmoid function in that it promotes faster convergence.
This is primarily because the sigmoid function may lead
to the vanishing gradient problem when the input 𝑢 is far
from zero [11], i.e., 𝑢 → ∞ or 𝑢 → −∞. The pooling
layer is used to reduce the dimensionality of feature maps
which are generated from conv and ReLU layers. In this
paper, max pooling is used for selecting maximum value
within each spatial neighbor with kernel size of 2 and the
stride of 2. This leads to downsampling the feature maps,
which helps CNNs facilitates faster convergence in training
procedures.

In the face authentication system, we need to create a
face template and store it in ID card or in database. The face
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template (face descriptor) will be used in face matching
process where the matching may be 1-to-1 or 1-to-many.
However, the output of CNNs produced by softmax layer
is not appropriate for this case and can not be used as a
face template. We proposed here to use the output from
several FCs layer as a 2D face descriptor (2DFD). Small
feature representation can be used for faster classification
with the risk of weak identity. We need templates for
face authentication where the templates of the same class
must be similar while those of different individuals remain
distinct. Based on our experiments, more and more FCs
layers can be used to construct a 2DFD and helps us to
improve the overall accuracy of face authentication system.
The 2DFD serves as a face template for face matching
(face authentication in our case). 2DFD is a general face
template usable for 1:1 verification and 1:𝑁 identification
with cosine or ℓ2 matching; authentication is however the
scope of our paper.

The architecture of our 2DFD, as shown in Fig. 3, is
based on fully connected layers from CNNs where conv is
the convolution operator, ReLU is a rectified linear unit and
FC is the fully connected layer. The conv, ReLU and Max
Pooling are repeated for several layers to produce more
and more salient features before passing them to the next
layer. The 2DFD is constructed by stacking the outputs
of 16 FC layers. Each FC output (128 units) is split into
two 64-element halves and reshaped into a 2 × 64 slice;
concatenating the 16 slices column-wise yields a compact
32 × 64 2D face template with enhanced discriminability.
From a deployment perspective, the 32×64 template (2,048
elements) can be stored as 8-bit integers in roughly 2 KB
per identity, enabling low-latency matching on resource-
constrained devices. Moreover, the layer-wise stacking
design aligns naturally with our Volume Deep Face (VDF)
representation: multiple 2DFDs computed from different
enrollment images can be concatenated along a third (depth)
axis to form a 3D tensor, preserving both within-layer struc-
ture and across-layer diversity. This structural compatibility
simplifies the transition from single-image (2DFD) verifi-
cation to multi-image (VDF) aggregation without changing
the downstream matching logic.

Let us define by 𝜆𝑘
𝑖
(𝑟, 𝑐) ∈ R the 2D face template for

class 𝑘 𝑡ℎ of image 𝑖𝑡ℎ where 𝑟 ∈ 𝑅 and 𝑐 ∈ 𝐶, i.e. 𝑅 = 32
and 𝐶 = 64, respectively. In order to standardize the face
template, we normalize it by 𝜆̂𝑘

𝑖
(𝑟, 𝑐) = 𝜆𝑘

𝑖
(𝑟 ,𝑐)−𝑚𝑖𝑛
𝑚𝑎𝑥−𝑚𝑖𝑛 so

that 𝜆̂𝑘
𝑖
(𝑟, 𝑐) ∈ [0, 1] . For illustration proposes, 𝜆̂𝑘

𝑖
(𝑟, 𝑐)

should be scaled to gray level range by subtracting and
multiplying it by 255, i.e., 𝜆̂𝑘

𝑖
(𝑟, 𝑐) := 255−(𝜆̂𝑘

𝑖
(𝑟, 𝑐)∗255).

One can observe the difference between 1D (the 1 × 128
1D descriptor) and 2D (the 2 × 64 and 32 × 64) descriptors
that the 2D descriptor exhibit more structured patterns
compared to the 1D vector. Hence, the between-class
variances can be maximized while maintaining the with-in
class variances as low as possible. This face template 𝜆̂𝑘

𝑖

will be used to construct the volume deep face in the next
section.

2.4 Volume Deep Face
In this section, we propose the volume deep face (VDF)

which is constructed from 2DFD 𝜆̂𝑘
𝑖
(𝑟, 𝑐). Let us suppose

that we generate multiple 2DFDs 𝜆̂𝑘
𝑖
(𝑟, 𝑐), 𝑖 = 1, ..., 𝑁

where 𝑁 is the number of training images for class 𝑘 𝑡ℎ.
The VDF is shown in Fig. 4.

This VDF is a 3D representation inheriting from mul-
tiple 2DFDs. Therefore, more distinctive features can be
achieved. The VDF can be regarded as a tensor-valued
function and formulated as

Λ = 𝜆̂𝑘1 ⊕ 𝜆̂
𝑘
2 ⊕ · · · 𝜆̂

𝑘
𝑖 · · · ⊕ 𝜆̂𝑘𝑁 , 1 ≤ 𝑖 ≤ 𝑁 (5)

where ⊕ is a concatenate operation. Therefore, each 𝜆̂𝑘
𝑖

is
concatenated in the direction of index 𝑖. 𝑁 is the number
of 2DFD generated from FC layers of CNNs. In summary,
given input images from class 𝑘 𝑡ℎ, create multiple 2DFDs
𝜆̂𝑘
𝑖

from FC layer, then concatenating all features to form
the VDF Λ. It should be noted that the VDF is generated
from CNNs where the learnable weight𝑊 has been trained
with error minimization. The details of generating VDF
are summarized in the algorithm 1.

Algorithm 1 Construction of volume deep face (VDF).

Let 𝐼𝑘
𝑖
∈ Z𝑊×𝐻×𝐶 be the training image 𝑖𝑡ℎ of class 𝑘 𝑡ℎ.

repeat for each 𝑘 ∈ 𝐾 , 𝑖 ∈ 1, . . . , 𝑁
compute conv and ReLU from 𝐼𝑘

𝑖

apply max pooling to ReLU
𝐹𝐶 (𝑥) 𝑗 ← 𝑎(𝑊𝑥 + 𝑏) ∈ R𝑚, 1 ≤ 𝑗 ≤ 16
stack 𝐹𝐶 (𝑥) 𝑗 ∀ 𝑗 to generate 𝜆̂𝑘

𝑖

construct Λ𝑘 for each class 𝑘 𝑡ℎ
until all classes 𝐾 have been generated

2.5 Volume Matching
Let Λ𝐴 be the VDF of images formulated by the

algorithm 1 and let 𝜆̂𝑡 (𝑟, 𝑐) denote the 2DFD of a test
image, as described in the previous section. As our VDF
can be generated from multiple images in the training set,
we assume that during the testing phase, only a single
image may be used per test. In such cases, images in the
training set can be used to construct the VDFs, while in the
test phase only 2DFD will be generated. We measure the
similarity between the VDF and 2DFD by

𝛾 =
1
𝐿

𝑁∑︁
𝑖=1

𝑅∑︁
𝑟=1

𝐶∑︁
𝑐=1




𝜆̂𝐴𝑖 (𝑟, 𝑐) − 𝜆̂𝑡 (𝑟, 𝑐)


2
, ∀𝜆̂𝐴𝑖 ∈ Λ𝐴 (6)

where 𝐿 = 𝑅 × 𝐶 × 𝑁 is the total number of elements in
the VDF. If 𝜆̂𝑡 (𝑟, 𝑐) is identical to 𝜆̂𝐴

𝑖
(𝑟, 𝑐), then 𝛾 → 0

otherwise 𝛾 →∞

3. Experimental Results
The images used in this article were collected from

the standard XM2VTS face database [5] as shown in Fig.
5. XM2VTS targets verification with a standardized proto-
col and strong baselines; identification-oriented sets (e.g.
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Fig. 3. The architecture of our deep CNNs for generating 2D face descriptor with compact template size 32 × 64. For visualization only, 𝜆̂ may be
linearly mapped to 8-bit grayscale (and optionally pseudo-colored); the color appearing in figure illustrations is artificially added to aid interpretation
and is not used during matching.
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Fig. 4. The volume deep face constructed from multiple 2DFDs 𝜆̂𝑘
𝑖
(𝑟 , 𝑐) for 𝑖th face descriptor at 𝑘th class with size 𝑅 × 𝐶. By concatenating along

the descriptor index 𝑖, these slices form a 3D tensor Λ𝑘 ∈ R𝑅×𝐶×𝑁 that captures intra-class variability and enables robust volume matching.

VGGFace2 [21]) are outside the current scope, with cross-
dataset verification planned. The database has 295 subjects,
each of which was captured by 8 shots with 4 distinct
sessions during 4 months resulting in a total of 2,360 im-
ages. The database was divided into three sets: training
set, evaluation set, and test set [5].

The corresponding 2DFD for each cropped and aligned
face image were generated and depicted in Fig. 6. Columns
(a), (c) and (e) are examples of aligned and cropped
face images, while columns (b), (d) and (f) represent
the corresponding 2DFDs of (a), (c) and (e), respec-
tively. It was cleared that the 2DFDs of the same in-
dividual are highly similar in which the within-class vari-
ance is minimized. Moreover, the 2DFDs of different
classes show significant differences, which helps max-
imize the between class variance. We can conclude
that the micro pattern on each element (𝑟, 𝑐) of 2DFD
𝜆̂ represents the 2D structure generated from the face
image exhibiting more discriminative features for classifi-
cation. All experiments were conducted on a workstation
equipped with an RTX 5070Ti Super GPU (16 GB VRAM),
an AMD Ryzen 7 9800X3D CPU (4.70 GHz, 8C/16T),
and 64 GB RAM. Using CUDA programming for GPU
acceleration, the proposed system achieves computation
times below 16 ms per frame, enabling real-time face au-
thentication.

3.1 Face Verification
The performance of our proposed method was eval-

uated based on the protocol described in [5]. False ac-
ceptance (FA) occurs when an imposter (false identity)
is incorrectly accepted as a client (true identify). In con-
trast, false rejection (FR) occurs when the true identity
has been rejected. The FA and FR were measured by
𝐹𝐴 = 𝐸𝐼

𝐼
× 100 and 𝐹𝑅 = 𝐸𝐶

𝐶
× 100, where 𝐸𝐼 and 𝐸𝐶

represent the number of imposter acceptances and client
rejections, respectively. 𝐼 and 𝐶 denote the total number
of imposter and clients claims in the system. In this paper,
𝐼 = 112000 and 𝐶 = 400. Table 1 shows the error rates of

our proposed method in comparison to the other approaches.
We obtain the total error rate (TER) with 0.01161% which
is the lowest error rate, where 𝑇𝐸𝑅 = 𝐹𝐴 + 𝐹𝑅. Under
the same XM2VTS protocol, prior baselines report TER
∼1.48–11.36%; weighted DeepFace reaches 0.01429%,
while ours attains 0.01161% (FR= 0), an ≈ 18.8% reduc-
tion. It is worth noting that, with a very low error rate of
our proposed method, implementing a face authentication
system for airport check-in process is feasible.

Table 1. Error Rates on XM2VTS Database. (The bold values indicate
the best performance.)

Methods [5] Test Set
FA (%) FR (%) TER (%)

UniS-ICPR2000 2.30 2.50 4.80
IDIAP-Marcel 1.748 2.0 3.75

IDIAP-Cardinaux 1.84 1.50 3.34
MUT-UniS-STT 0.97 0.50 1.47

UCL 1.71 1.50 3.21
TB 5.61 5.75 11.36

UniS-ECOC 0.86 0.75 1.61
UniS-NC 0.48 1.00 1.48

weighted DeepFace [7] 0.01429 0.0 0.01429
Our Proposed Method 0.01161 0.0 0.01161

4. Discussion and Future Work
The proposed face authentication framework demon-

strates strong performance on the XM2VTS benchmark
by integrating two major components: a compact 2D Face
Descriptor (2DFD) and the higher-dimensional Volume
Deep Face (VDF). While the VDF effectively aggregates
discriminative features from multiple images, the 2DFD
provides efficiency for single-image scenarios. Together,
these representations enable a balance between accuracy
and computational cost.

One important observation from our experiments is
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Fig. 5. Examples face images obtained from the XM2VTS database used in the face authentication experiments. For fair comparison, all methods in
Table 1 were evaluated on identical XM2VTS inputs under the standard XM2VTS protocol and evaluation procedure [5].

that the use of eye-based alignment through the two-stage
YOLO (2SYOLO) detector significantly reduces intra-class
variation caused by pose and rotation. This step ensures
that both the 2DFD and VDF descriptors are constructed
on normalized facial regions, which improves stability and
robustness in real-world conditions. Furthermore, the pro-
posed volume matching strategy consistently produced low
error rates even when the test set included natural varia-
tions. Although promising, there are several open research
directions worth pursuing. First, extending the training pro-
cess with large-scale, unconstrained face datasets such as
VGGFace2 [21] or MS-Celeb-1M [22] may help generalize
the learned representations to more diverse demographics.
Second, the framework could be adapted for video-based
face authentication where temporal information across
frames may provide additional discriminative cues beyond
static images. Third, incorporating lightweight neural ar-
chitectures (e.g., MobileNet or ShuffleNet) would make
the system deployable on edge devices, which is critical
for real-time security applications such as airport check-in
and access control systems. In summary, the proposed
system establishes a strong baseline for compact and dis-
criminative face representations. By addressing scalability,
real-time deployment, and robustness to uncontrolled condi-
tions, future research can further advance the applicability
of VDF-based face authentication in practical biometric
systems.

5. Conclusions
We have proposed a novel face representation, the

Volume Deep Face (VDF), for a face authentication system.
The VDF is composed of multiple concatenated 2D face de-
scriptors (2DFDs) in the tensor form allowing us to generate
more discriminative features of face representations. The
2DFDs were derived from multiple fully connected layers
of CNNs that has been pre-trained prior to the VDF con-
struction process. Additionally, input of face images were
aligned and cropped with our proposed two-stage YOLO
based face and eye detection which helps us increasing the
performance of the overall system. We obtained the total
error rate with 0.01161% which is the lowest error reported
to date on the XM2VTS database. Beyond the current
evaluation, the proposed framework is also scalable and
can be adapted for large-scale applications, such as airport
check-in, smart surveillance, and secure access control,
where both accuracy and efficiency are critical. Moreover,
because the VDF can naturally extend to video sequences
and multimodal biometric fusion, the framework opens
new opportunities for developing real-time, privacy-aware,
and user-friendly authentication systems that meet the de-
mands of future intelligent security infrastructures. Future
work will examine cross-database generalization under il-
lumination and pose variations and include comprehensive
ablations on the number of FC slices and volume-matching
criteria.
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Fig. 6. The 2DFDs generated from the XM2VTS database: (a) face images from session 1 shot 1; (b) the corresponding 2DFDs of (a); (c) face images
from session 1 shot 2; (d) the corresponding 2DFDs of (c); (e) face images from session 4 shot 1; (f) the corresponding 2DFDs of (e).
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