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Abstract

This research presents a framework for analyzing and forecasting three-
phase electrical load using Quantum-Inspired Machine Learning combined
with STL Decomposition, K- Means Clustering, and Anomaly Detection
techniques. Real-world data were collected from the Industrial Technician
School building at RMUTSV over a period of 151 days (December 2024 - April
2025). The analysis revealed that Phase B exhibited the highest average
current at 13.40A, compared to Phase A (6.02A) and Phase C (7.62A), indicating
a significant phase unbalance, with an average A-B difference of 7.38A and
a maximum differential of 17.9A. STL Decomposition indicated an upward
trend in Phase B load, increasing from 7.0A in December 2024 to 21.5A in
March 2025, along with multiple residual spikes exceeding +5A, reflecting
transient load fluctuations. Anomaly Detection (Z-Score + Isolation Forest)
identified 17 abnormal points, with the highest anomaly recorded on
March 12, 2025, reaching 36.0A. Using K-Means clustering (k = 3), the load was
classified into three clusters Low ~7.1A Medium ~13.7A High ~19.3A These
findings provide critical insights for developing effective energy management
strategies within educational buildings.

Keywords : Electrical load forecasting, Quantum-inspired machine learning,

STL decomposition, Anomaly detection, Load clustering
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1. umi
luga Smart Energy a1a1si3eululaduiissyuslaandsau unnanewdu
szuunainfidureu InsilluanlindsunUasnasaiainungfnssuvesdndne

gunsadledl uazfanssune 9 aelueans eendlsinny wedaneinsalnanwuy
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Saduinivesidanuanuuugidondyfuteyailudaay Samuulsusiugs
wardinandana dailnluannsadanis noise wagguuvulnaniisousyluzn
1o3a Time Series lnag19fudl (EL Khantach et al., 2019; Zhou et al., 2021;
Xiong et al., 2018)

Wonoulaned cuddetihiaue Quantum-Inspired Deep Load Forecasting
Model 9" manu Deep Learning, Attention Mechanism W& Time Series
decomposition ﬁqvﬁqaﬁug’;’hﬁéwLﬁuﬂﬁzﬁm%mwmiwmﬂiaj Ui et al.,, 2023;
Jiang et al., 2024; Xiong et al., 2018) IaJLmaffé’umm%’u%@uﬁuaawqaﬂssﬂmamlﬁ”
Andu Lﬁum’mLLaiusJ’WLLaziaa%’Uﬁzjuazgawai’m (Ahmed et al., 2023; Lin et al., 2025;
Patel et al., 2025; Farsi et al., 2021)

v

mimaauﬁuﬁayja‘lmm 3 LWamﬂmmiﬁsuﬁwqmammw UNT.AIATE
wuTaAatLILE1NI7 LSTM Wag Random Forest 517 20-25% lasdl MAE #gn
0.89A uansfisdnen1nlunisdnng noise LLazgﬂLLUU%’Usgau (Zhou et al., 2021;
Zhang et al., 2021; Ji et al., 2023) gﬁﬂﬂmauﬁamﬁﬂﬁj luma Quantum-Inspired
Faflunumdfymeeinssaniusnaznistnn sndsud B (Han et al, 2023; Ji

et al,, 2023; Jiang et al., 2024)

2. Inguszaen

2.1 W11 Quantum-Inspired Deep Load Forecasting @i uluanaiuina
Wlevueanamun 1w, uaz 1 u a9 MAPE < 5%

2.2 SJLﬂiﬂzﬁwqaﬂﬁﬁuI%aW;lj’m STL Decomposition, K-Means, wag Anomaly
Detection Tngnsadumgiiaund >95% uavdnnaulvian 3 sesy

2.3 1WipuLiuyUszansniw Quantum-inspired Model /U LSTM, GRU, ARIMA

Tnely RMSE, MAE, MAPE LAEARILIUEINMINNATALRY
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2.0 LEAUDLAUIANITNANIUINNKAYUIY WWean Phase Imbalance >10% wag

ANWAINU 5%

3. 3saulunside

3.1 Mafiuteya

sAdeilyveyatieiilaainenmaiFeursgaamnisy uninedewmalulad
ssnarsive naifuteyalvanlwviuuuauina laun Phase A, Phase B uax
Phase C éauﬁ’uﬁa;ﬂaqmmﬁumgamwi’u Tugsszoziandauniiousuanay
WA 2567 FaawIu 1A, 2568 (TInTrEgLIan 5 Liou) veyavianuaey luguuuy
Time-Series 11834 Usznaumeainszudlivinaeds (A) vesunazila ILERRIVE
iprasunar iy Wofudueugnaesasszutiivteya lnvhmsiieuieudy
iwsesiioTmnnIgiu uazdummMALnaIReAouBaUesdun (Emor Percentage
) wansUsziiununanmnanndoueylumis 0.07% f1 0.78% Feagluinami

gausUlnd IS UNITIATIEUMIAINTSULANA

Main Distribution Board (MDB) Clamp Meter (CM)
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Total Power Usage Maximum Demand of This Month Alen Davica
39 61.0 2

FPower Usage Trend Connecied Davice Number

3

AN 2 NSHAAINANTITINAINULNTN LUy Real Time

3.2 wiadafilsiasen

1. STL Decomposition Equation

STL (Seasonal-Trend decomposition using LOESS) wuinadaniead@d
Tausngavoyasynsuia (Time Series) sonudu 3 aaundn lawn wuluy (Trend)
wansfimnenisiudsunuastesoyalusvezen wu nslendanufindulumnads
Wy ggn1a (Seasonality) LLamgiJLLuumquﬁauLLUaﬂﬁLﬁmﬁwgw 9 AUYIEIET
wu mslelvandfistuluiuduns-ans wazanadlutungn anufaund (Residual
%30 Remainder) AornunlsUnuiivdoogudsndauuluuuazganiasenly
iy aruAnunAnivangeandsundy videmslsnuAaund yavoyalnanlivily

wnaz Tuanansadeuduaunis

Y, =T +5S, +R, (1)

e v annssualnedsluwnas iy
T : wwnlunveveya
s, JUwuuauduggna wu anunlutusssun ueslutunen

R,: ANUAAUNR LU NegainUng
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2. Pearson Correlation Coefficient

Tuszuullin 3 wladileluoansiou minlnanluunaslaluauga
(Unbalanced Load) 81avilsianansenu wu anuseuazadluanowlalamands
mwm?{amaaqmstﬁ miqutﬁawé’ﬂmuﬁqﬁu (Power Loss) A1 Power Factor
anas é’qﬂ'jumﬁLﬂiflzﬁmmﬁuﬁuéﬁuaqﬂizLLaIV\Ivilu'rizWi'NLLéazLWa?jﬂﬁmmﬁﬁfy
TunsnuunuInaunalvan kavnsIaFuamNRAUNAYe3sEUU Pearson Correlation
Coefficient w3e Aranduiusiiiesdu (1 lovensyiunuduiusidaeay (Linear

Relationship) s¥mneiuUsanssin 1w nsvuawa A duwa B Wewduanns

3 (X XY -Y)
r><Y = — —
\/Z(xi -X)* .\/Z(\c -Y)

(2)

Tnefl X,Y P AINTTLAveIE A uay B
XY Ao Aadeves X uay Y
r,, Ao Aavdiusilesdusenang X wag Y (egsew -1 & +1)
3. Euclidean Distance (16?}}114 K-Means Clustering)
TuuSunwosmsinziinanliwuuuse Ty wu nan 3 mealuensisou
(Phase A, B, C) Euclidean Distance luifuiadosiiatann “unazfuiiguuuunisly
Tnanendeunnaisanfuminualny” delysaufu KMeans Clustering 2%
anmnsadangu (Cluster) ufidinginssulnannatefu 1wy Jusssunndadou

JunengadUunm Junfivanisaiivay wi levesuszyudiuiunn Wewduaunis

dp,a) = [Y(p -q)" 3)

Tned P, q AD nnwmesvesnsualivinluLeaz Ty (1w [Phase A, B, C))

n As U = 3
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4. Z-Score (Yarnudeauuainaiade)

Z-Score iumaiiamsadditlyina “anien ﬁwqmﬂﬁﬁl,a?{maqsq@%auua
unualvy” Imaﬁmﬂuwﬁawamﬁmﬁ'mwummgw (Standard Deviation)
ansalufionsiaduiudorsnanfianliviiden “audedfaund” Woidey
nungAnssuunfvessyuy Z-Score suaa%amvaa;wﬁa fio Anfiuen “%auﬂaﬁﬁwmﬂ

' a A =i —
ANRAYNFIULULILVUNINTE Y L“UEJuLﬂjuﬁllﬂ’]i

2-LH (4)
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Tefl X Ao Anszualuivilufunds
LA Al
o fio audsauuannsgy
yn |z|> 2v3e|z|> 3 Gennerafiinung
5. Phase Imbalance Calculation (ﬁﬁmmﬁﬂmmﬁama)
szuuliivh 3 amsiinisnszatelvanessauna tioUssAvBamessruy
wazaneLgydendany mnluasluurasanaiun asassalinuseuazay
Tuaned Sulnanun @onanmussviondas, a1elil uargUnsailasdu maiin
Neutral Current gelussuu 4 ang UseanSamuedssuuanas LLazhﬂw%maqasﬁu
aun1sdamamliauna (Current Imbalance) wuusosay laiiludieslygns

ANUUINTZU IEEE wae NEC GLuﬂ’]iﬁ'Wu’Jmﬂ’]ﬂ’ﬂﬂl&lﬁuﬂﬁ%@ﬁﬂi%LLﬁ

[ -
Phaselmbalance (%) = == x 100 (5)
|

avg

lngfl | Ao nIzuageanty 3 wia (A, B, 3e Q)

|+l +H.

., e ALadeveenseuans 3 e | =
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6. Anomaly Score (Isolation Forest Conceptual)

Isolation Forest (iForest) 1duinailan Machine Learning @15 Anomaly
Detection y3amantadu “veyaRnund” lasiomgluroyadiivianefii wu van
Phase A, B, C uaggamnisamiuluunaz3u Isolation Forest laila "$1aasmgfingsu
Und" waloudnns LLsJﬂézTaagJa (Isolation) %agaﬁﬁmﬂﬂﬁﬁﬂagfimm?{m (Isolated)
wazamIIngnkeneenaInvayad ulae lumenduiureyaunfaznadlanany
Fumoulunisusn imsiveglnadunauveyadu iForest azastamatsauluz
(Random Trees) Ingn1siden Feature wa Threshold LUUAL WAAzUYATLQN
uen (Partition) aslu Leaf Node wasnuluauninaglaniisn audniads (Path

Length) lvlunisuenveyaazgnirluAuias Anomaly Score Rl

E(h(9)

s(x,n)=2 (6)

Tnefl s(x,n)#o Anomaly Score wasaya x Wiafivoyaviaman n
E(h() o Arwidniadslumsuenveya x vuaulal
o(n) Ao masiilagUszsnamesarmdnedslu BST (il Normalize)
AALLULOYT29 0 89 1108 1 fo Aaunfiga na 0.5 Ae Undi Tna 0 Ae an

v v '

FYOUTUNUUBLADULN

4. Wan15IY

4.1 WQ@ﬂiiﬂﬁﬁﬂlW“ﬁﬂ 3 Wasneiy mﬂmﬁmezﬁszjyauuaﬂsw,alﬂ/\hﬁwmq
Phase A, B wag C luriaifieusuiay w.e. 2567 Aafiouswiey n.a. 2568 U
wia B finnszualadegsgaiiiesSeuiivuiumadunasneinan (ade ~ 13.04)
yaupiiia C finnszuangluseduuiunats (Rde ~ 7.6A) wasiwa A dasiiige

(1238 ~ 6.0A) AILAAIIUAITIN 1
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A13°97 1 @0ALTaNTSUUN (Descriptive Statistics)

518019 Phase A (A) Phase B (A) Phase C (A)

Count 151 151 151
Mean ~6.02 ~13.40 ~7.62
Std ~3.97 ~6.89 ~0.63
Min 0.7 4.3 1.3
Max 20.1 36.0 26.1
25% 2.6 7.3 3.9
50% 5.8 13.9 6.7
5% 9.3 18.9 10.9

140

120

80

Current (A}

60

Descriptive Statistics of Three-Phase Currents

o

A 3 NsiUSeuiBuanfganssaunvensekalivnlulnazinavasssuulnmi 3

NG

dl a = ' aa a
VINATINN 3LﬁUﬂﬁ'WWLLﬁ@\‘iﬂ'WiLUﬁEJULVIEJ‘UV’]'TVI'NﬁﬂG]Lﬂjﬂ‘WSimuq

(Descriptive Statistics) %aﬂﬂizLLavLWV\lﬂuLLG{azLWa (Phase A, Phase B LLay Phase

Q) Mnvayananua 151 1en1snena lnsdlausnIuuNugiiung (Bar Chart) Lite

wanawwlluunisnsseiivesveyaluuaaziva laun Anade (Mean) Phase A =

6.02A, Phase B = 13.40A, Phase C = 7.62A U1 Phase B fiAnadegsan uanafa

n155ulnangenIm e @1uleauuu1nsgIu (Standard Deviation) Phase A =
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3.97A, Phase B = 6.89A, Phase C = 4.63A Phase B ﬁﬂlﬂﬂ’s’lMLLU'ﬁﬂi’Juq\iﬁm
agvoufansdsunladivanogdluasiiaue ﬁwﬁwqﬂ (Min) LLazéﬂqqq(ﬂ (Max)
Phase A 0.7-20.1A, Phase B 4.3-36.0A 1La¥ Phase C 1.3-26.1A Phase B ﬁSUI’N
nszuanifian vsvendamginssulnandluasil a1aolng (25%, 50%, 75%)
ﬂ'wﬁﬁagmmm Phase B = 13.9A qqmﬁ Phase A (5.8A) Lag Phase C (6.7A) 8814
Fonau Flmduisaaluaugavedvanlussuu 3 wia agulnarannsmnuld
Phase B fidnwaizn1ssulnaniigauazuususiuanniianifleifisuiudnasana 3
vedagymanuluaunavesivasluszuy oralugaruseuarangs arwgnyde
Tuany wagnsidenanmvesgunsailuszezen SamsinisnsaaeulazU3uanna
TnanssvmataogashiaueifioifinusyAvsnmuosszuuls

4.2 ﬂ’;’miﬂ.jau@aiw’j’]ﬂma (Phase unbalance)

Tussuulviwnssuaaduanua araluausassianaiatudennssua
vdoussfuvesumazalumniy awngmdnanannsnszanelvanluaiaense
nslyaugunsaififiivanluauung wafinunfeUssansnmszuuanas LAans
gydondenu anuseuasaulumeds vilaulas vilewawnod uarluuoimesanma
oradaussdnluasiiaue amansegmislenuuazarundemoiang msed 2
uanInARAveInINANINTELATTINaElULAALY (A-B, A-C uay B-C) GalyUsudu
seiumaluaunauazuuluansuUsiuresinanlivi veyatvisluaunuunly
WU 3dnaugalvan (Load Balancing) ﬂ’]iszfauﬁﬁqu%mjaqﬁ’u wagMsUsUUsSe
spuulviladesnimannty

A5199 2 ANAUANSTEINIE (Phase difference)

378015 A _AB (A) A BC (A) A CA (A)
Mean ~7.38 ~5.78 ~2.12
Std ~4.72 ~5.79 ~2.88
Max ~17.9 ~17.8 ~10.5
Min ~0.1 ~0.1 ~0.01
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9137991 2 uansArAuansTesnsrualitssaalussuuaa T
f9sanAInszuaads (Mean) ﬁauﬁmwummgm (Std) ﬂ"}gqqm (Max) wazan
am (Min) w21 anszuatadoegluyig ~2.12-7.38A Tagwlafidanunisgegad
ARABUSTN 7.38A AauDenuuInIgIugaanegil ~579A axnaulisanuiiy
uradlvanluy1awIIIa ﬁwqqqmammmﬁqswiwLWa (Max) gafia ~17.9A B
wansdsnnglvanluaunalusasdia asan (Min) Inague (~0.01A) USUBNINUN
Yranafilnanaunaifovauy sl nadwsdsudufeniaiia Phase Unbalance
Tussuu Gaaennassiunualuuvesivaslurianardidfanssugaaznislyay

gunsauduinntumaien

Summary Statistics of Current in Three Phases
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AN 4 NM5USEUTREUADATINTSAUUIVDIANNANNSELE b sz aaluss Uy
T 3 i

1wl 4 uansadfiFanssauvesnnuannszualinissnaa 3 A
laun A AB A21MA1938WI13 Phase A uay Phase B A BC A211A1938W1719
Phase B ttag Phase C A_CA A71UAT93ENIN Phase C Uz Phase A mﬂﬁﬂjazﬁa
Wanua 151 Y 0 WUI1 ALaE 8 (Mean) A AB= 7.38A, A BC= 5.78A,
A_CA = 2.12A Flmidiua Phase A uag B fanunsnszuaniniiaalagiade

a"auﬂ'%ﬁ'mwummgm (Std) A AB=4.72A, A BC= 579 A, A CA= 2.83A
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A_BCiauudsuiugean vavenfeadluiuueulunisiulnanves Phase B
way C A1geEn (Max) uazasngn (Min) A ABgedm = 17.9A, ¢am = 0.1A A CA

'
[

sgaanniian = 0.01A vsuanluuagianat wia C uay A Tlvanlnaissiuinn
ulnesruuamdadaraluauna agula19InTeyanyI ANLATINTLUATINNG
waildnwarluauga lnslamy A_AB Aiflamnumuedsuargegauiniian uang
fedymanuluaunavestnanluszuu 3 wa Fse19amaneUszdnsnmyesszuy
lulvin anuseuazay wazergnislynuvesgUnsailuszeren msfinisnsiaaey
wazuImsdansivanssymasaosnanzaufioanaunenszuaimand

4.3 M3n5733uAANUNR (Anomaly Detection) anmslunaia Isolation
Forest lun1smsraaoua@nuniveata B (Fuduaiiiuuiluslnangsfinund)
wuandl 17 Fu Ainsaanuaiaund Gesanfetudl 10-13 fure wa. 2568 fianlvan
wia B 13g9fia 36.0A fauanslunnssil 3

a1579ft 3 awAnUnEluwa B (Anomaly Detection Summary: Phase B)

Average | Average | Average
Gl Fudl Current | Current | Current NUYLNR)
(B) (A) (@)
1 |2024-12-11 | 21.2A 10.8 A 10.7A | AngeiiaunArasnanafion
2 | 2020-12-23 | 185A 9.7 A 96A | mgnneiadeinly
3| 2025-01-02 | 145A | T70A 81A | avwiaundvismudlu
4 | 2025-01-08 | 19.0A 102 A 121A | enufieunfluduamii 2
5 2025-01-17 | 191A | 89A | 103A | Inengeiania
6 | 2025-01-29 | 195A 9.0 A 11.3A | nangewisUansiioy
7 | 2025-0-05 | 2138A | 1199A | 1219A | A spike wsoufuynivia
8 | 2025-02-10 | 17.58 A 7.42 A 9.67 A | AmuRAUNATEAUNATN
9 |2025:02-17 | 1992A | 818A | 1310A | nszuawa C wauiu
10 | 2025-0225 | 2377A | 941A | 1232A | 9agsaaveaiiiou nw. 2568
11 |2025-03-03 | 206A | 9.0A 137 A | Gudtungfnssunady
12 | 2025:0306 | 226A | 142A | 124A |Inangswseudunniva
13 | 20250310 | 268A | 145A | 182A |qa3uvisgeaninund
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14 | 2025-03-11 | 29.8 A 14.6 A 229A | mgainunieenstaiau
15 | 2025-03-12 | 36.0 A 201 A 261A | Igeanveaila B

3

€

16 | 2025-03-13 28.9 A 14.5 A 175 A &Jnmgqmmm
17 ] 2025-03-24 | 279A 14.6 A 176 A | SsgsinunAvisUaneifiou

Daily Average Current of Phase A, B, and C (Dec 2024 - Apr 2025)
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I —— Phase B
( —— Phase C
Anomaly in Phase B
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AN 5 115R5193UARAUNATRINS ekl lua B Tagluwmaila Isolation

Forest 9MNvayanseiaade ey (FuiAu w.e. 2567 - lW¥gu W.A. 2568)

NAMNTA 5 91NN15ATIUARAUNAVBINTEka bW luwa B Tneluwaila

Isolation Forest 91nvayalad g s1eduluyie SUIAL W.A. 2567 - lWBI8U WA,

[ 7
a

2568 wuria B fimnseuaraunfsiunisdy 17 Ju lneyinidaunddaiaungane

[y

Fuil 10-13 Turay wa. 2568 Fadnszualiingsda 36.0A (12 Tureu w.e. 2568)

INANRRETITEUUToYNUTEIIM 13.5A neRnTIuainaasneuds nana B

e

=)

asfinund deanadamnainanwluaunaszminasa nslseuianinge
WANTIULVaALaNIZA9 sudunesinauuaziinsiziaiui oUsatuaing
Fomeuanifiuszansnmmslandailussuy

4.4 n3FnnqungAnssulnannie K-Means Clustering 15l maile

K-Means Clustering (k = 3) ¥iilvanunsaduunulyauliwiesnidu 3 nau
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A15197 4 HAN15IANQUALY K-Means (3 Ngu)

nqu Phase A (mean) | Phase B (mean) | Phase C (mean)
Cluster 0 3.2 7.1 4.0
Cluster 1 9.8 19.3 11.6
Cluster 2 54 13.7 7.8

K-Means Clustering of Load Behavior: Mean Current per Phase
19.3

NN Phase A
BN Phase B
175 EEN Phase €

Mean Current (A}

Cluster 0

Cluster 1
Clusters

Cluster 2

A il 6 nsilssuiiisunseualnadsluinazmlaniunaundamesvoamgAinssy
Tnanlvinn

10N 6 LLammﬁmmzﬁL%méu (Clustering Analysis) mawywﬁ
nszualin 3 wila (Phase A, Phase B uag Phase C) Imuﬁwqﬁﬂﬁmiwamlw%
oonuu 3 nqu Ae Cluster 0, Cluster 1 ua Cluster 2 nvayaiilavhnsdnnau
(19 K-Means e GMM) Tneiianseuaedsluunaziasil Cluster 0 Phase A =
3.2A, Phase B = 7.1A ilay Phase C = 4.0A ﬂﬁimiwaﬂﬁ’ﬂ (Low Load Group) L@n3
Sevasaniienmslandaus Cluster 1 Phase A = 9.8A, Phase B = 19.3A wax
Phase C = 11.6A naultanga (High Load Group) uansisrnanadisinslaluivings
WU 1avinsUnansevandaSeu Cluster 2 Phase A = 5.4A, Phase B = 13.7A

uay Phase C = 7.8A naulvanU1unats (Moderate Load Group) UdUBN{d
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yaaaiiinislandsndlusedunans aguna Cluster 1 Sanseuandogagelunn
e Tngiamy Phase B fifinszuatadogeis 19.3A asnounginssumslaivanuuy
luauna Feenvamanodamaaie wu Arwsoudzay augydendsay
wazongmslanuresgunsailiein Fsersfiunmsnis vimsdanisivanseynaa
og9ANna ialfimaiosnmuessvuy uaglynsdangunginssulnaaiduuuinig
Tumsnauwunsinnswdsnuessnanyaan

4.5 MshAsignuualunLarqenia (STL Decomposition) 39NN1T4EN

p9aUsznaUNTEavauna B lagly STL Decomposition lanasiail

STL Decompaosition of Phase B Average Current (Dec 2024 - Apr 2025}

202412 2025-01 202502 2025-03 2025-04 2025-05

20

21
g
g

10

5

202412 2025-01 202502 2025-03 2025-04 2025-05

202412 2025-01 202502 202503 202504 202505

Residual
e

M A ¥ Selnea S e P S s Sty L o
o R g . "ug . .

i S e

2024-12 2025-01 2025-02 2025-03 2025-04 2025-05

ATWA 7 NTuenesnUsenaudy e unieis STL vesnszualiiad oua B

(SUNAU W.A. 2567 — LUWI8U W.A. 2568)

NNIMEUAAINANTIATIETUUY STL (Seasonal-Trend decomposition
using LOESS) dwidunseualniadely Phase B 91nvoyasiotu duun 1 Sunau
WA, 2567 §9 30 Wweu WA, 2568 Inauendyaimeenidy 3 @i laun Trend
(wwalug) wwnluudmsiudunediewwunnuiousunnn (~7.0) Tdaudeas
nanaieuiiunay (~21.54) neusrvanatdnuesluieuwwe (~14.00) dxneu
ngfnssulviandigeluesnsnaiiesmasnyrenud ervduiusiuradaiounie

- 42 ¥ - ¥ v e
Aanssuiiindulue1ms Seasonal (gunia) dsUnvugnduseduam lnsaiuniu
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oglursUszanm -5 89 +5A vsuendanninssunislalwviriiaennaesiufanssy
71 9 U nsleumu iy Funi-ans) waranaswasiungagaddann
Residual (mufiaunf) finfaunfeudarmuiouiivaudinaraieuduiau §q
A DosiunueTuiy £5A azﬁauLmmaaﬂmwwﬁw’%ammﬁmﬂﬂmumﬂ%
Tnan wu nslynuaisssnsvuelng sisessuusyueauseurhauinUnily
Phase B a5UnaL931As129 Phase B fuualunnislondasudivd unaonyas
5 1AauLkINYead Imaﬁv‘igmmiuymzazmLLazwqﬁﬂiiuqqmaaéwﬁ’mLf\]u
auiaund (Residual) aunsalyiduiansassunginssuiwvanldannund
Famurzunnisiweyad iyl n1swensailnanlia (Load Forecasting)
A1TIHUIANITNAIIUDIRTEL (Smart Energy Management) MIATIZILaY

WoususzuulraninaUnAlus1Asseu

5. @3Unan1sidY
miteiflainauenseumsiinssiuarnensallnanlnrisyuvanuialy
amsideu Tnglunaia Machine Learning inaurauwwafn Quantum-Inspired
i"JaJﬁJU STL Decomposition, K-Means Clustering ki Anomaly Detection 1ag
Auvoyanszualninaiad iy 151 Yu (Funau wa. 2567 - lwwiey w. 2568)
NAN1T3ATIZANUI Phase B fiAnszuadogeaaiuszanal 13.40A 1aiedi Phase
A wae Phase C A ady 6.02A way 7.62A mud1fu a1 Phase Imbalance 5291119
Phase A uaw Phase B lafinagdl 7.38A laufin1gaaniis 17.9A msiiasiznaay
decomposition WWekualuunN15IA 1T wves Phase B 910 7.0A lutieuguanny
W..2567 +0u 21.5A Tuiiteufiunau 2568 Armandeaunwuy Residual My +5A
Qnwuvatends ngusd dennielnangegadoundy nansaduaifauniaae
Z-Score W@y Isolation Forest wu 17 3a anomaly I@Sﬁmq\‘iqmagﬁ 36.0A lufudl
12 fune W, 2568 Madanquueyanis K-Means (k=3) uwudluanlnioonidu 3

nqu laun aas (~7.14), nanuiunans (~13.74) uazlvangs (~19.3A) wa
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MsAnedatusatnlulvion15119N LAz US TSI NI TNE U UBIASIS B URYNY

fUszansanmely

6. aaAUT1ENa

n15AN¥INUI1 Phase B inglvanluaunagsnaivnula (75-78%) 31819
Annnsideunegunsnilyndinugs wwu infesUivermavioindasdinslula
weamnauly aamﬂgaQﬁULLmMNﬁizq'jwLﬁ'ammhiauﬂatﬁu 2-3% 92459015
L?{auamwmaqqﬂﬂiﬂju,amﬁumm;amawamai‘ (Patel et al., 2025; Lin et al.,
2025) wwaluunisiiad uvesinanlu Phase B (910 7.0A &1 21.5A n3 ot udy
207%) #insranulae STL decomposition avneuienislsauiiulsiuauianssa
e‘ﬁqaamﬂgaﬁumu%’aﬁ%y’iwwqﬁﬂiiuiwamiummﬁauﬁmmﬁumauqq (Han et
al., 2023; Ji et al., 2023) A15ASI9NU Anomaly #9890 36A 819113910 Inrush
Current mamaLmas‘ﬁamﬂsgqﬂﬂmjw;auﬁ’u winluudmsdanisenansliin
Overheating wazduns1emasvuulaafy §denna oetunwIniei duonisly
Anomaly Detection I8¢ Load Forecasting \eanaudes (Ahmed et al., 2023;
Lin et al., 2025; El Khantach et al., 2019) mif’ﬁjﬂﬂaqlmmy’w K-Means Clustering
LLamIﬁJLﬁummLLmnm'wumgULLUUIMamaéwﬁ’mau ﬁaaaﬁ’uagumsmumu
Demand Response AukUINIG Smart Grid kag 1SO 50001 Lﬁa“u%'uauﬂaiwam
Lazan Peak Load (Ji et al., 2023; El Khantach et al., 2019; Zhou et al., 2021)
yorausuuzluswAnms NS U wanaey GRIVRI ALTL) WAENEANTTU
tzﬁsgam i1 AN luAa Deep Learning (wu LSTM, GRU) Wilongnnsailnan

SLULYNILALATINTUANUAAUNR b8 U (Farsi et al., 2021; Jiang et al,,

2024; Zhang et al., 2021)
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