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Abstract  

Hypertension represents a complex condition that substantially increases the global cardiovascular disease burden and 

related deaths. This study compares three tree-based machine learning approaches-Decision Tree (DT), Random Forest (RF), 

and eXtreme Gradient Boosting (XGBoost)-using 96 multi-domain features to predict reductions in both systolic and diastolic 

blood pressure following antihypertensive treatment in patients with varying comorbidity profiles. Our approach utilizes paired 

t-test analyses to examine blood pressure changes before and after medication across different patient categories, while 

employing comprehensive decision tree visualisation to create interpretable decision pathways that identifying predictive 

associations between medications and blood pressure outcomes. Analysis of 160 patients indicated significant blood pressure 

improvements in all studied patient groups, with systolic blood pressure reductions showing statistical significance (p = 0.001) 

and diastolic blood pressure changes demonstrating similar significance levels (p = 0.02). The Decision Tree method showed 

optimal performance for systolic blood pressure prediction, recording 93% F1-score and 83% AUC values, whilst Random 

Forest demonstrated excellence performance in diastolic blood pressure prediction with 98% F1-score and 92% AUC. 

XGBoost performed less effectively than the other two algorithms across metrics. Through decision tree analysis, we identified 

strong predictive associations between diuretics and ACE inhibitors with systolic blood pressure reduction, whilst nitrate 

compounds and combined medication regimens showed significant predictive relationships with diastolic blood pressure 

decrease. The machine learning models successfully integrated diverse patient characteristics across multiple domains, 

including demographics, clinical parameters, lifestyle factors, and socioeconomic determinants. Our findings from this 160-

patient cohort demonstrate the clinical utility of interpretable machine learning models for medication response prediction, 

providing valuable insights that can guide personalized antihypertensive therapy selection and inform clinical decision-making 

through data-driven treatment approaches. 
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1.  Introduction 

Hypertension represents one of the most 

significant modifiable risk factors for cardiovascular 

disease, affecting approximately one-third of the 

global population and contributing substantially to 

cardiovascular morbidity and mortality worldwide 

(Mills et al., 2020). The clinical management of 

hypertension becomes increasingly complex when 

patients present with comorbidities such as 

cardiovascular disease and diabetes, necessitating 

personalized treatment approaches that consider 

multiple patient factors simultaneously (Elendu et al., 

2024). However, predicting individual patient 

responses to specific medications remains challenging 

due to the multifactorial nature of blood pressure 

regulation and the complex interplay between patient 

characteristics, comorbidities, and treatment efficacy 

(Treebupachatsakul et al., 2022; Panyamit et al., 2022). 

Machine learning approaches have shown 

promise in hypertension management, with previous 

studies employing various algorithms for treatment 

prediction. Existing investigations have primarily 

focused on general hypertension prediction or single-

algorithm approaches. Nuryunarsih et al. (2023) found 

that logistic regression and neural networks performed 

better in Indonesian hypertensive patients (Nuryunarsih 

et al., 2023), while other studies have utilised RFECV 

and XGBoost for treatment outcomes (Chang et al., 

2019). However, these approaches have shown limited 

attention to comparative analyses of tree-based methods 

for predicting both systolic and diastolic blood pressure 

responses in patients with multiple comorbidities. 

This study addresses a critical research gap by 

being the first to employ three tree-based machine 

learning algorithms Decision Tree (DT), Random 

Forest (RF), and XGBoost to predict both SBP and 

DBP reductions following antihypertensive treatment 

in hypertensive patients with cardiovascular and diabetic 

complications. Our novel approach incorporates 96 

features spanning clinical parameters, sociodemographic 

characteristics, lifestyle factors, and medication profiles 

to create comprehensive predictive models. Importantly, 

we provide interpretable decision tree visualizations 

that illustrate medication-specific pathways for blood 

pressure reduction, offering clinically actionable 

insights for personalized treatment selection. To our 

knowledge, this represents the first investigation to 

combine such an extensive multi-domain feature set 

with comparative tree-based algorithm analysis, 

whilst providing interpretable decision support tools 

for antihypertensive medication optimisation in 

complex patient populations. 

2.  Objective 

This study aims to predict decreases in systolic 

blood pressure (SBP) and diastolic blood pressure 

(DBP) in hypertensive patients with cardiovascular 

and diabetic complications following antihypertensive 

medication treatment using three tree-based machine 

learning algorithms: Decision Tree (DT), Random 

Forest (RF), and XGBoost. Specifically, we will: (1) 

develop and compare the predictive performance of 

DT, RF, and XGBoost models using 96 clinical and 

demographic features, measuring accuracy, sensitivity, 

specificity, and AUC; (2) identify the most influential 

features contributing to blood pressure reduction and 

quantify their relative importance; (3) visualize 

decision pathways through decision tree models to 

illustrate how different antihypertensive medications 

and patient characteristics influence blood pressure 

reduction; and (4) provide interpretable decision rules 

to guide clinicians in selecting optimal treatment 

strategies for patients with these comorbidities. This 

research addresses a current gap in the literature, as no 

previous study has examined SBP and DBP reduction 

using these specific algorithms while providing 

clinical decision support through visualization of 

antihypertensive medication effects. 

 

3.  Methods and Analysis 

This cross-sectional study was conducted on 

160 hypertensive patients admitted to or visiting 

Fauji Foundation Hospital, Rawalpindi, with ethical 

approval from the Research Ethics Committee of Pir 

Mehr Ali Shah Arid Agriculture University, Rawalpindi. 

Participants aged ≥ 19 years with diagnosed 

hypertension- with or without cardiovascular disease 

or diabetes-were included based on symptoms of high 

blood pressure, such as headache, dizziness, blurred 

vision, chest pain, shortness of breath, nausea, and 

sleep apnea. Hypertension was defined as three 

measured values of systolic blood pressure > 140 

mmHg or diastolic blood pressure > 90 mmHg, or 

current use of antihypertensive medication. Written 

informed consent (in English/Urdu) was obtained 

from all participants after they were briefed about the 

study purpose and protocol. 

Patient data were collected using a structured 

questionnaire specifically developed for this study, 

encompassing demographics (age, gender, home 

location, education, occupation), clinical symptoms, 

medication history, hereditary factors, dietary habits, 

lifestyle factors, socioeconomic status, smoking 

habits, and biometric information (height, weight, 

BMI). The primary outcomes were defined as binary 
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variables representing clinically meaningful reductions 

in systolic blood pressure (SBP) and diastolic blood 

pressure (DBP) following antihypertensive treatment. 

A reduction was defined as follows: SBP decrease ≥ 10 

mmHg from baseline to post-treatment, and DBP 

decrease ≥ 5 mmHg from baseline to post-treatment. 

These targeted binary thresholds were 

established through a review of current clinical 

evidence demonstrating clinically significant blood 

pressure improvements. Research indicates that 

systolic reductions of 10 mmHg or greater correlate 

with substantial decreases in cardiovascular events, 

including a 20% lower incidence of coronary heart 

disease (Hong, 2017). Correspondingly, diastolic 

reductions of 5 mmHg represent meaningful 

therapeutic benefits in cardiovascular risk mitigation 

(Canoy et al., 2022). 

The dataset was systematically organized and 

divided using machine learning techniques into input 

features (X) and binary output labels representing 

reductions in SBP (y₁) and DBP (y₂), with 

comprehensive details provided in Tables 1 and 2. 

Three tree-based machine learning models were 

applied Decision Tree (DT), Random Forest (RF), and 

XGBoost to predict blood pressure reductions using 

various Python libraries including pandas, scikit-

learn, NumPy, and matplotlib. Specifically, 

DecisionTreeClassifier and RandomForestClassifier 

algorithms from the scikit-learn library were utilised 

for DT and RF respectively, while XGBClassifier 

from the xgboost library was employed for XGBoost 

analysis. Decision tree visualisation was performed 

using Graphviz and Pydotplus libraries. Data analysis 

was conducted using exploratory techniques in 

Jupyter Notebook, and model performance evaluated 

using standard classification metrics. 

 

3.1 Data Preparation and Sample Size 

Considerations 

We processed survey responses from 160 

participants, converting textual data into numerical, 

scaled datasets suitable for machine learning analysis. 

Missing data handling was performed systematically: 

one missing age entry was imputed using the median 

age value, while missing blood pressure values were 

addressed using established clinical ranges with mean 

or median imputation within these ranges to ensure 

data completeness and accuracy. We investigated the 

correlations between dependent and independent 

variables to understand their impact on both systolic 

and diastolic blood pressure reductions. Information 

about the input and output features is provided in 

Appendix Tables A1 and A2. 

Our study's sample size of 160 participants 

with 96 predictor features aligns with established 

statistical guidelines for developing robust predictive 

models with binary outcomes. When building 

predictive models, the relationship between sample 

size (n), number of outcome events (E), and predictor 

parameters (p) is crucial for model reliability. According 

to methodological standards, adequate sample size 

should satisfy three key criteria: (1) minimal optimism 

in effect estimates, indicated by a global shrinkage 

factor ≥ 0.9; (2) negligible overfitting, demonstrated 

by a difference ≤ 0.05 between apparent and adjusted 

model performance (Nagelkerke's R²), and (3) precise 

population risk estimation (Riley et al., 2020). In our 

study, with approximately 80% of participants 

experiencing blood pressure reductions (128 events 

for SBP, 130 for DBP), we achieved an events-per-

predictor (EPP) ratio of approximately 1.3-1.4. While 

traditional rules suggest 10-20 EPP, recent research 

indicates that lower EPP ratios can be acceptable 

when using machine learning algorithms with 

appropriate regularization and cross-validation 

techniques. 

The 96 features included in this study were 

comprehensively selected through a systematic 

approach combining literature review and clinical 

expertise. A structured questionnaire was specifically 

developed for this research based on an extensive 

review of existing literature on hypertension 

prediction and treatment response. The questionnaire 

content and feature selection were validated through 

consultations with three clinical professors 

specializing in cardiovascular medicine and 

hypertension management. 

All questionnaire items were retained as 

features to ensure comprehensive coverage of relevant 

clinical, demographic, and therapeutic variables 

without loss of potentially important predictive 

information. This approach was chosen over 

automated feature reduction techniques (such as PCA, 

LASSO, or mRMR) to maintain clinical interpretability 

and ensure that all expert-identified variables were 

available for analysis. The decision to include the full 

feature set was further supported by our use of tree-

based algorithms, which inherently perform feature 

selection through their splitting mechanisms and can 

handle high-dimensional data effectively while 

identifying the most predictive variables through 

built-in importance rankings. 
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3.2 Model Development and Validation Strategy 

Our use of tree-based algorithms (Decision 

Trees, Random Forest, XGBoost) with built-in feature 

selection and pruning mechanisms helps mitigate 

overfitting concerns. The 96 features were carefully 

selected to comprehensively capture relevant clinical, 

demographic, and therapeutic variables, allowing for 

nuanced prediction of treatment response while 

maintaining statistical validity through rigorous 

validation procedures. Multicollinearity among 

features was assessed using correlation analysis, with 

highly correlated features (correlation coefficient > 0.9) 

identified and addressed to prevent redundancy in the 

models. The binary classification targets (SBP/DBP 

reduction: yes/no) were assessed for class balance, 

and with 80% of participants showing reductions, 

class imbalance was addressed through appropriate 

weighting techniques during model training. We 

employed k-fold cross-validation (k = 5) to ensure 

robust model evaluation and prevent overfitting to 

specific data partitions. Hyperparameters were 

optimized using grid search with cross-validation to 

identify optimal model configurations. Performance 

metrics were calculated per class with confidence 

intervals reported across cross-validation folds to 

establish statistical reliability, whilst feature 

importance was calculated using built-in tree-based 

importance rankings to identify key predictors of 

blood pressure reductions. 

 

3.3 Decision Tree  

Decision Trees (DT) are widely used in data 

mining to discover patterns and extract insights from 

data. Once constructed, a DT can predict outcomes for 

new data based on patterns learned from the training 

dataset. Essentially, a DT serves as a structured 

framework for storing and applying learned 

experiences (Sheppard, 2019). In this study, we 

developed classification models to predict whether 

patients would experience decrease in systolic blood 

pressure (SBP) or diastolic blood pressure (DBP) 

based on available features. Our dataset comprised 

160 participants with 96 features, encompassing 

demographic information, health status, medications, 

symptoms, hereditary factors, and dietary habits. Our 

objective was twofold: to train the algorithm to 

identify blood pressure reductions and to visualize the 

decision pathways that lead to SBP and DBP 

decreases following antihypertensive treatment. 

We employed the Classification and Regression 

Trees (CART) algorithm, which is implemented in 

Scikit-Learn (Sheppard, 2019). Unlike other decision 

tree algorithms such as ID3 and C4.5 (developed by 

Quinlan), CART handles both categorical and 

continuous variables and incorporates pruning 

techniques to prevent overfitting. 

CART is one of several decision tree 

algorithms, alongside others like ID3 and C4.5. While 

ID3 (developed in the 1980s) and its successor C4.5 

use entropy as their splitting criterion, CART uses the 

Gini index (Che et al., 2011). The underlying principle 

is similar across these algorithms: they recursively 

partition data into subgroups based on available 

attributes using specific splitting criteria. Both 

entropy and the Gini index quantify the impurity of 

data partitions, where lower values indicating greater 

homogeneity within groups. An entropy value of 0 

represents perfectly homogeneous data, while a value 

of 1 indicates maximum randomness (equal distribution 

between classes) (Fernández et al., 2016; Géron, 2017). 

We selected the Gini index for our study because it 

directly measures the probability of misclassification, 

making it particularly suitable for our binary 

classification problem (Rahmati et al., 2022). In our 

clinical application, these subgroups represent 

hypertensive patients with varying comorbidity 

profiles, including cardiovascular disease (CVD) and 

diabetes complications.  

The primary advantage of DTs lies in their 

interpretability and transparent decision-making 

process. They excel at revealing patterns in complex 

datasets that lead to specific outcomes. However, this 

transparency comes with potential limitations, 

particularly when dealing with imbalanced data where 

the algorithm may favor majority classes while 

fragmenting minority classes. To mitigate this bias, 

we considered ensemble methods, such as bagging 

and boosting, which combine multiple decision trees 

to create more robust and balanced predictions 

(Fernández et al., 2016). 

 

3.4 Random Forest  

To overcome the limitations of decision trees, we 

used an ensemble method called Random Forest. The 

idea is to build multiple decision tree models and 

combine their results. We can use the “Sklearn.ensemble 

module” in “SCikit-Learn”, which provides the 

“ens.RandomForestClassifier” for creating Random 

Forest models. Random Forests are designed to create a 

more robust model by utilizing multiple decision trees, a 

technique known as bagging or bootstrap aggregation. 

This approach helps overcome overfitting and reduces 

bias by considering multiple prediction results 

(Sheppard, 2019). 
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3.5 Boosting 

Boosting is another ensemble method where 

predictions are made in stages and sequentially to 

achieve better results (Seni & Elder, 2010). This is 

different from Random Forests, which combine the 

results of many models built and executed in parallel 

(Kaur et al., 2022). In this study, we used XGBoost, 

which is one implementation of boosting. Scikit-learn 

also provides several implementations of XGBoost 

for machine learning algorithms. Our dataset 

containing 96 features across multiple domains 

(clinical, demographic, lifestyle, socioeconomic), 

likely involves complex non-linear relationships and 

feature interactions that tree-based methods naturally 

capture without requiring extensive feature 

engineering or transformation. 

 

3.5.1 Measuring the Performance of the Model 

There are many ways to measure the 

performance of the model that we made as shown in 

Figure 1, we will start with the confusion matrix, 

which includes true positives (TP), true negatives 

(TN), false positives (FP), and false negatives (FN). 

 

 
Figure 1 Confusion matrix for model prediction 

performance 

 

True positive (TP) refers to when the model 

successfully predicts a positive outcome because the 

actual outcome is indeed positive. It means that the 

model correctly identifies instances as positive when 

they are actually positive. 

True negative (TN) refers to when the model 

correctly predicts a negative outcome because the 

actual outcome is indeed negative. It means that the 

model accurately identifies instances as negative 

when they are actually negative. 

False positive (FP) refers to when the model 

incorrectly predicts a positive outcome when the 

actual outcome is negative. It means that the model 

mistakenly identifies instances as positive when they 

are actually negative. 

False negative (FN) refers to when the model 

incorrectly predicts a negative outcome when the 

actual outcome is positive. It means that the model 

fails to identify instances as positive when they are 

actually positive.  

3.5.2 Accuracy 

Accuracy measures how often the model 

correctly predicts both positive and negative 

outcomes. It represents the overall correctness of the 

model’s predictions, considering both false positives 

and false negatives. It is calculated by dividing the 

total number of correct predictions (true positives and 

true negatives) by the total number of instances in the 

dataset. 

 

Accuracy =
TP+TN

TP+TN+FP+FN
 

 

3.5.3 Precision  

Precision, also known as positive predictive value, 

measures the proportion of correctly predicted positive 

instances out of all instances predicted as positive. It 

focuses on the accuracy of positive predictions. 

 

Precision =
TP

Total positive prediction 
=

TP

TP+FP
 

 

3.5.4 Sensitivity (Recall) 

Sensitivity, also known as recall or true 

positive rate, measures the proportion of correctly 

predicted positive instances out of all actual positive 

instances. It focuses on the ability of the model to 

correctly identify positive instances. 

 

Sensitivity =
TP

Total positive actual 
=

TP

TP+FN
 

 

3.5.5 Area under the Curve 

AUC, which stands for Area Under the Curve, 

refers to the area under the Receiver Operating 

Characteristic (ROC) curve. The ROC curve plots the 

true positive rate (sensitivity) against the false 

positive rate. AUC measures how effectively the 

model distinguishes between positive and negative 

instances. A higher AUC value indicates better overall 

model performance in terms of classification 

accuracy. 

 

3.5.6 F1-Score 

The F1-score formula is calculated using the 

formula: 

F1 = (2 × Precision × Recall) / (Precision + Recall). 

This metric combines both precision and recall 

(sensitivity) into a single value, providing a balanced 

evaluation of the model's performance 
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3.7 Analysis  

In this research, we applied statistical methods 

and machine learning models. First, we compared 

systolic blood pressure before and after treatment 

using a paired t-test. Then, we implemented Decision 

Tree (DT), Random Forest (RF), and XGBoost 

models, developed using Python 3.7. The paired t-test 

was conducted using the scipy.stats library, while 

model training and evaluation were performed with 

scikit-learn (version 0.21.2). To evaluate different 

machine learning methods, the dataset was divided 

into a training set and a testing set, with 80% of the 

data randomly allocated for training and the 

remaining 20% used for testing. 

 

3.8 Ethical Approval 

Participants received a comprehensive 

explanation of the study's purpose and procedures 

before providing their written consent in either 

English or Urdu. The study population consisted of 

patients evaluated at Military Hospital (MH) 

Rawalpindi and Fauji Foundation Hospital (FFH) 

Rawalpindi, Pakistan. 

This research adhered to the principles outlined 

in the Declaration of Helsinki (2013 revision). The 

Ethics Committee of Pir Mehr Ali Shah Arid 

Agriculture University Rawalpindi granted institutional 

approval for this study involving human subjects 

(Approval No. PMAS-AAUR/1406). All participants 

provided informed consent prior to enrollment. 

 

4.  Result 

4.1 Descriptive statistics 

Table 1 presents descriptive statistics for 160 

participants with varying conditions: hypertension 

(HTN), hypertension with cardiovascular disease 

(HTN-CVD), hypertension with diabetes (HTN-DM), 

and a combination of all three (HTN-CVD-DM). 

Participant ages ranged from 13 to 72 years. The 

youngest diagnosed hypertensive patient was 13, 

while the oldest was 72. In the HTN-CVD group, ages 

ranged from 19 to 60, and among patients with diabetes, 

from 26 to 57. The average age at first diagnosis was 

45 years for HTN, 46 for CVD, and 44 for diabetes. 

Appendix Table A3 analyzed the connection 

between different factors and the decrease in DBP. 

The variables with the strongest correlation were DBP 

before and after therapy, followed by morning 

headache, foot numbness, shakiness, regular fish 

consumption, systolic blood pressure after therapy, 

and light-headedness. 

Appendix Table A4 examined the relationships 

between different features and decreases in SBP. The 

most strongly correlated variables were systolic blood 

pressure before and after therapy, followed by diastolic 

blood pressure, dry mouth, tingling sensation, 

morning headache, regular vegetable consumption, 

family history of hypertension, and headache. 

Table 2 shows the results of the paired t-test 

analysis, which revealed significant differences 

between SBP and DBP values before and after 

medication: SBP (p = 0.001) and DBP (p = 0.022), 

with a significance level of 0.05.
 

Table 1 Descriptive statistics for participants HTN, HTN-CVD, HTN-DM, HTN-CVD-DM patients  

 Age AGE of HTN Age of CVD Age of Diabetes 

Count  160 160 139 62 

mean 52 45.2 46.8 44.3 

std 8.6 9.8 8.8 7.6 

min 19 13 19 26 

25% 48 40 41 39.2 

50% 53.5 48 49 45 

75% 59 52 54 50 

max 72 60 60 57 

 

Table 2 Analysing the SBP and DBP before and after taking antihypertensive medications using a t-test 

Variable 

Before taking 

meds 

After taking 

meds 
Mean 

Diff 
95% CI Paired t_test p-valuea 

 Mean ± SD 

Hypertension 

(mmHg) 

Systolic  146.7 ± 16.30 141.2± 15.8 5.5 (2.2-8.8) 0.001* 

Diastolic 91.4 ± 8.2 89.3 ± 9.8 2.1 (0.3-3.8) 0.022* 

* Significant at 0.05 level, a paired t-test 

Note: The confidence intervals shown are for the mean difference between before and after treatment values. 
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Figure 2 Violin plots showing systolic blood pressure (SBP) and diastolic blood pressure (DBP) values before and  

after therapy (mmHg) 

 
Figure 2 shows the violin plot comparing SBP 

and DBP values before and after therapy. It illustrates 

the impact of the given medication on reducing SBP 

and DBP levels. The y-axis represents blood pressure 

in mmHg. The graph highlights slight differences in 

both SBP and DBP before and after medication. 

 

4.2 Prediction Model for a Decrease in Diastolic 

and Systolic Blood Pressure 

The parallel coordinates plot in Figure 3 

compares three machine learning algorithms for 

classification. The Decision Tree model achieved the 

highest overall average performance (88.8%) with 

the best metrics in Accuracy (90%), Sensitivity 

(90%), and AUC (83%). Random Forest followed 

with a strong average performance (87.6%) and the 

highest F1-score (93%). In contrast, XGBoost 

performed comparatively lower, with an overall 

average of 81.4% and a notably poor F1-score (68%), 

despite showing similar Precision scores across all 

three algorithms.
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Figure 3 Parallel coordinates plot comparing performance metrics of three machine learning algorithms for classifying de-

creases in systolic blood pressure (SBP) 

 

 
Figure 4 Parallel coordinates plot comparing performance metrics of three machine learning algorithms for classification 

(decrease DBP) 
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This parallel coordinates plot in Figure 4 com-

pares three algorithms (Decision Tree, Random For-

est, and XGBoost) across five performance metrics in 

term of decrease of diastolic blood pressure, with Ran-

dom Forest demonstrating superior overall perfor-

mance (95.6% average) compared to Decision Tree 

(93.4%) and XGBoost (82.8%). Random Forest ex-

cels particularly in Accuracy (97%), Precision (96%), 

and F1-Score (98%), while maintaining strong perfor-

mance in Sensitivity (95%) and AUC (92%, tied with 

Decision Tree). XGBoost significantly underperforms 

in F1-Score (68%) compared to the other algorithms 

(96-98%), while all three models show their strongest 

metrics in different areas - Random Forest in F1-Score 

(98%), Decision Tree in F1-Score (96%), and 

XGBoost in Accuracy (90%). 

Figure 5 illustrates the AUC values that reflect 

how the various classifiers are performing. A higher 

AUC signifies better predictive ability. DT leads with 

the highest AUC of 0.83, followed by RF with AUCs 

of 0.82. XGBoost trails with the lowest AUC of 0.82.  

Figures 5 and 6 show the area under the curve 

(AUC) c-statistic for predicting SBP and DBP if the 

value is near 1, it means the model is almost perfect, 

but if the AUC c-statistic is below 0.5 means not a 

good model.

 

 
Figure 5 The AUC values that reflect how the various classifiers are performing 

 

Figure 6 AUC values for different classification algorithms showing predictive performance 
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Decision tree in Figure 7 shows factors 

associated with reductions in systolic blood pressure 

(SBP) based on medication usage patterns. These 

patterns represent statistical associations rather than 

causal relationships. In this study, we can observe that 

the machine learning process considers the most 

statistically important feature to be whether the 

participant does not consume diuretics. Out of 124 

patients, 4 individuals did not experience a decrease 

in systolic blood pressure, while 120 individuals did 

experience a decrease. If we further analyse the data, 

in the next branch, if the patient does not consume 

diuretics, the decision tree tests whether the patient 

does not use ACE inhibitors as their treatment. In this 

case, there are 57 patients who do not use ACE 

inhibitors, and among them, 14 individuals do not use 

Ascard Plus. Then, in the next branch, the decision 

tree tests whether the patient uses β-blockers. Among 

those who do not use diuretics, Ascard Plus, and β-

blockers, there are 2 individuals whose blood pressure 

decreases. 

In the analysis of patients who use diuretics on 

the right branch, we can observe more subdivisions. 

We can see that out of the patients who use diuretics, 

3 individuals did not experience a decrease in blood 

pressure, while 62 did. From this, we can conclude 

that there are a total of 12 leaf nodes consisting of 

individuals whose blood pressure decreased, and 3 

leaf nodes involving those whose blood pressure did 

not. If sorted from top to bottom, we can see that the 

statistically important factors identified by the 

machine learning decision tree in this study are the 

consumption of diuretics, ACE inhibitors, Nitromint, 

Ascard Plus, angised, β-blockers, combination 

medications, and Cardnit, according to their respective 

branches. It is important to note that these represent 

correlational patterns within our dataset, not 

established causal efficacy rankings. This 

interpretation also applies to the graph showing the 

decrease in diastolic blood pressure (Figure 8) below. 

This decision tree analysis helps us understand the 

statistical relationships between different variables 

and their association with decrease in systolic and 

diastolic blood pressure.

 

 
Figure 7 Decision tree showing factors associated with a decrease in systolic blood pressure based on medication usage 

patterns 
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Figure 8 Decision Tree Decrease DBP information 

 

In our study, using a decision tree to train the 

model, we found that four patients did not have lower 

SBP. Patient 1 does not consume sustac, β-blockers, 

Ascard Plus, ACE inhibitors, or diuretics. Patients 2 

and 3 take Cardit, angised, and Nitromint but not 

diuretics. Additionally, patient 3, who also does not 

have a decrease their SBP, does not take lipid pills, 

cardnit or angised, but takes aspirin/panadol/disprin 

and diuretics. The decision tree visualisation for SBP 

prediction is shown in Figure 8, illustrating the 

hierarchical statistical importance and decision 

pathway. Regarding DBP, there were also four 

patients who did not lower their blood pressure. 

Patients 1 and 2 do not consume Nitromint or angised. 

Patient 3 does not consume lipid pills, angised, but 

consumes diuretics, aspirin/panadol/disprin, and 

nitromint. Patient 4 does not consume Sustac, 

diuretics, β-blockers, ACE inhibitors, or Nitromint. 

4.3 Discussion 

This study evaluated tree-based machine 

learning models Decision Tree (DT), Random Forest 

(RF), and XGBoost to predict reductions in systolic 

(SBP) and diastolic blood pressure (DBP) in 

hypertensive patients, including those with 

cardiovascular disease and diabetes. A key innovation 

of our approach was the integration of 96 multi-

domain features, revealing previously unrecognized 

predictive patterns. Among these features, the most 

predictive for SBP reduction included pre/post SBP 

readings, dry mouth, tingling sensation, and vegetable 

intake, while for DBP, the top predictors were pre/post 

DBP values, morning headache, shakiness, and fish 

consumption. 

Our findings demonstrate superior 

interpretability compared to traditional approaches. 

DT achieved the best performance for SBP prediction 

(F1-score: 93%, accuracy: 90%), while RF excelled in 

DBP prediction (F1-score: 98%, accuracy: 97%). 
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XGBoost underperformed in both tasks. These results 

differ markedly from prior studies by Nuryunarsih et 

al. (2023), who found that logistic regression and 

neural networks performed better in Indonesian 

hypertensive patients (Nuryunarsih et al., 2023). This 

discrepancy reveals an important methodological 

insight: our study's inclusion of detailed symptom 

profiles (dry mouth, tingling sensations) and dietary 

factors (vegetable and fish consumption) provided 

tree-based models with interpretable decision 

pathways that traditional statistical methods could not 

effectively utilize. 

The interpretability of our decision tree models 

revealed clinically meaningful medication hierarchies 

that extend beyond existing knowledge. For SBP 

reduction, diuretics emerged as the primary splitting 

feature, followed by ACE inhibitors and Nitromint. 

Notably, for DBP reduction, Nitromint ranked as the 

most important feature, followed by Angised and 

ACE inhibitors, suggesting distinct therapeutic 

pathways for diastolic versus systolic control a 

differentiation not clearly established in previous 

literature. These findings align with established 

treatment guidelines (Al-Makki et al., 2022) but 

provide quantitative evidence of medication 

importance rankings in our diverse patient population 

comprising hypertension-only, hypertension with 

cardiovascular complications, and hypertension with 

diabetes. 

A unique contribution of our study is the 

identification of non-traditional predictive factors. 

Beyond conventional clinical parameters, dietary 

factors emerged as significant predictors: regular fish 

consumption ranked among the top correlates for DBP 

reduction, while regular vegetable consumption was 

significant for SBP reduction. This dietary-medication 

interaction pattern has not been systematically 

quantified in previous machine learning studies of 

hypertension management. This builds upon previous 

research showing associations between diet and 

hypertension prevalence (Yang et al., 2022). 

Additionally, specific symptom profiles (morning 

headaches for DBP, dry mouth for SBP) demonstrated 

predictive value, suggesting that patient-reported 

symptoms could enhance treatment personalization. 

Our subgroup analysis across hypertension-

only, hypertension with cardiovascular disease, and 

hypertension with diabetes revealed differential 

feature importance patterns, enabling more precise 

treatment targeting. These findings support the 

clinical utility of interpretable machine learning 

models for personalized antihypertensive therapy, 

providing actionable insights that traditional 

statistical approaches have not captured. 

 

4.4 Limitations and Contributions 

Our study's sample size of 160 participants 

with 96 predictor features aligns with established 

statistical guidelines for developing robust prediction 

models with binary outcomes. While our results are 

based on a single-centre, cross-sectional dataset 

which may limit external validity, this study makes 

several important contributions to understanding 

behavioural and lifestyle factors in hypertension 

management that extend beyond these constraints. 

First, this is one of the pioneering studies to use 

interpretable machine learning algorithms to predict 

blood pressure response based on a comprehensive set 

of 96 features, including dietary habits, 

socioeconomic factors, and health behaviours in a 

complex patient population with comorbidities. To 

address potential generalisability concerns, we 

deliberately included a heterogeneous patient 

population with equal proportions of hypertension-

only, cardiovascular complications, and diabetes 

comorbidities, providing insights across diverse 

clinical presentations rather than a homogeneous 

cohort. While our single-centre design limits 

immediate generalizability, several factors support the 

broader applicability of our findings. Our study 

population represents a diverse socioeconomic 

spectrum typical of urban Pakistani healthcare 

settings, with patients from varying educational 

backgrounds, income levels, and geographical 

locations within the region. The inclusion of equal 

proportions of patients with hypertension-only, 

cardiovascular complications, and diabetes reflects 

the complex comorbidity patterns commonly 

encountered in clinical practice globally. Second, our 

correlation analysis revealed crucial behavioural 

insights - regular fish consumption, vegetable intake, 

and dietary patterns emerged as significant predictors 

alongside traditional clinical measures. The decision 

tree visualization provides a transparent framework 

for understanding how lifestyle factors interact with 

physiological parameters to influence blood pressure 

control, offering actionable behavioural modification 

strategies for clinicians and patients that can be 

adapted across different healthcare settings. 

Third, this study demonstrates the feasibility of 

capturing complex behavioural patterns even in 

resource-limited, single-centre settings. Our high 

predictive accuracy (90% for SBP, 97% for DBP) 

suggests that behavioural and lifestyle data, when 

properly analyzed, can be as valuable as traditional 
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clinical parameters in predicting treatment outcomes. 

The robust cross-validation procedures employed 

help ensure that these results reflect genuine 

predictive relationships rather than overfitting to our 

specific dataset. Fourth, while cross-sectional, our 

study provides immediate insights into which 

behavioural modifications might yield the most 

significant blood pressure improvements. This can 

help prioritize lifestyle interventions and create more 

targeted, personalized behavioural counselling 

approaches rather than generic lifestyle advice. The 

interpretable nature of our tree-based models makes 

these insights readily translatable to clinical practice 

across different healthcare contexts. 

Finally, by incorporating socioeconomic status, 

dietary habits, and lifestyle factors into our predictive 

models, we address a critical gap in hypertension 

research that often focuses solely on clinical 

parameters. This holistic approach establishes a 

framework for future studies to explore the complex 

interplay between behaviour, socioeconomic factors, 

and treatment response. To mitigate single-centre 

limitations, we recommend future multi-centre 

validation studies across diverse populations and 

healthcare settings to establish the broader 

applicability of our findings, ultimately supporting 

more comprehensive and equitable hypertension 

management strategies. 

 

4.5 Implications  

These findings have significant clinical 

implications. The decision tree visualization provides 

a practical tool for clinicians to select initial 

antihypertensive therapy based on patient 

characteristics, predict which patients are likely to 

achieve target BP reductions, identify patients who 

may require combination therapy upfront, and 

personalize treatment approaches for complex 

patients with comorbidities. For instance, our model 

suggests that patients not responding to diuretics 

alone may benefit from the early addition of ACE 

inhibitors or β-blockers. 

 

5.  Conclusion 

The study demonstrates that tree-based 

machine learning algorithms offer valuable tools for 

predicting blood pressure response in complex 

hypertensive populations. Specifically, Decision Tree 

(DT) algorithms achieved 90% accuracy in predicting 

systolic blood pressure (SBP) reduction, making them 

particularly suitable for SBP management in patients 

with hypertension alone or complicated by 

cardiovascular disease and diabetes. The 

interpretability of DT models provides clinicians with 

clear decision pathways, revealing that diuretics, ACE 

inhibitors, and β-blockers play pivotal roles in SBP 

control. 

Random Forest (RF) algorithms showed 

superior performance for diastolic blood pressure 

(DBP) prediction, with 97% accuracy, suggesting 

their utility in fine-tuning DBP management. The 

ensemble nature of RF captures complex interactions 

between multiple factors, including dietary habits 

(fish consumption), symptoms (morning headache, 

foot numbness), and medication combinations, 

offering a more nuanced approach to DBP control. 

These findings have significant clinical 

implications. By leveraging patient-specific 

characteristics, including demographics, lifestyle 

factors, comorbidities, and symptom profiles, 

clinicians can move beyond one-size-fits-all 

approaches to truly personalized hypertension 

management. The visualization of decision pathways 

enables evidence-based treatment selection, 

potentially reducing the trial-and-error period often 

associated with antihypertensive therapy 

optimization. 

Furthermore, this research establishes a 

framework for integrating machine learning into 

routine clinical practice, particularly in resource-

limited settings. The high predictive accuracy 

achieved with a relatively modest sample size 

suggests that these approaches can be implemented 

effectively even in single-center environments. Future 

integration of these algorithms into clinical decision 

support systems could significantly improve 

hypertension management outcomes, reduce 

healthcare costs, and enhance patient quality of life 

through more targeted and effective treatment 

strategies. 

 

6.  CRediT Author Contribution Statement 

All authors contributed to the manuscript. DN 

curated data, conducted analysis, interpreted data, 

wrote results, reviewed, and edited. SR collected data, 

curated data, wrote, reviewed, and edited. OO wrote 

drafts, interpreted data, reviewed, and edited. HW 

curated data, wrote drafts, interpreted data, reviewed, 

and edited. MZ: handled project administration, 

curated data, and edited manuscripts. LH, AA and SS: 

wrote, supervised, reviewed, and edited. All authors 

read and approved the final version of the manuscript. 

 

Conflict of interest: Nothing to declare  

 

Funding: No funding 



NURYUNARSIH ET AL. 

JCST Vol. 15 No. 4, October-December 2025, Article 140 

14 

7.  References 

Al-Makki, A., DiPette, D., Whelton, P. K., Murad, M. 

H., Mustafa, R. A., Acharya, S., ... & Khan, T. 

(2022). Hypertension pharmacological treatment 

in adults: A World Health Organization 

guideline executive summary. Hypertension, 

79(1), 293-301. 

https://doi.org/10.1161/HYPERTENSIONAH

A.121.18192 

Canoy, D., Nazarzadeh, M., Copland, E., Bidel, Z., 

Rao, S., Li, Y., & Rahimi, K. (2022). How much 

lowering of blood pressure is required to 

prevent cardiovascular disease in patients with 

and without previous cardiovascular disease?. 

Current Cardiology Reports, 24(7), 851-860. 

https://doi.org/10.1007/s11886-022-01706-4 

Chang, W., Liu, Y., Xiao, Y., Yuan, X., Xu, X., Zhang, 

S., & Zhou, S. (2019). A machine-learning-

based prediction method for hypertension 

outcomes based on medical data. Diagnostics, 

9(4), Article 178. 

https://doi.org/10.3390/diagnostics9040178 

Che, D., Liu, Q., Rasheed, K., & Tao, X. (2011). 

Decision tree and ensemble learning 

algorithms with their applications in 

bioinformatics. Software Tools and Algorithms 

for Biological Systems, 191-199. 

https://doi.org/10.1007/978-1-4419-7046-6_19 

Elendu, C., Amaechi, D. C., Elendu, T. C., Amaechi, 

E. C., & Elendu, I. D. (2024). Dependable 

approaches to hypertension management: A 

review. Medicine, 103(24), Article e38560. 

https://doi.org/10.1097/MD.0000000000038560 

Fernández, L., Mediano, P., García, R., Rodriguez, J. 

M., & Marin, M. (2016). Risk factors 

predicting infectious lactational mastitis: 

Decision tree approach versus logistic 

regression analysis. Maternal and Child 

Health Journal, 20(9), 1895-1903. 
https://doi.org/10.1007/s10995-016-2000-6 

Géron, A. (2017). Hands-on machine learning with 

Scikit-Learn and TensorFlow (1st ed.). 

California, US: O’Reilly Media. 

Hong, K. S. (2017). Blood pressure management for 

stroke prevention and in acute stroke. Journal 

of Stroke, 19(2), 152-165. 
https://doi.org/10.5853/jos.2017.00164 

Kaur, K., Sagar, A. K., & Chakraborty, S. (2022). 

Accelerating the performance of sequence 

alignment using machine learning with 

RAPIDS enabled GPU. Journal of Current 

Science and Technology, 12(3), 462-481. 

https://doi.org/10.14456/jcst.2022.36 

Mills, K. T., Stefanescu, A., & He, J. (2020). The 

global epidemiology of hypertension. Nature 

Reviews Nephrology, 16(4), 223-237. 
https://doi.org/10.1038/s41581-019-0244-2 

Nuryunarsih, D., Herawati, L., Badi’ah, A., Donsu, J. 

D. T., & Okatiranti. (2023). Predicting changes 

in systolic and diastolic blood pressure of 

hypertensive patients in indonesia using machine 

learning. Current Hypertension Reports, 

25(11), 377-383. 

https://doi.org/10.1007/s11906-023-01261-5  

Panyamit, T., Sukvivatn, P., Chanma, P., Kim, Y., 

Premratanachai, P., & Pechprasarn, S. (2022). 

Identification of factors in the survival rate of 

heart failure patients using machine learning 

models and principal component analysis. 

Journal of Current Science and Technology, 

12(2), 336-348. 

Rahmati, O., Avand, M., Yariyan, P., Tiefenbacher, J. 

P., Azareh, A., & Bui, D. T. (2022). 

Assessment of Gini-, entropy-and ratio-based 

classification trees for groundwater potential 

modelling and prediction. Geocarto 

International, 37(12), 3397-3415. 
https://doi.org/10.1080/10106049.2020.1861664 

Riley, R. D., Ensor, J., Snell, K. I. E., Harrell, F. E., 

Jr., Martin, G. P., Reitsma, J. B.,… & Collins, 

G. S. (2020). Calculating the sample size 

required for developing a clinical prediction 

model. BMJ, 368, Article m441. 

https://doi.org/10.1136/bmj.m441 

Seni, G., & Elder, J. F. (2010). Ensemble methods in 

data mining: Improving accuracy through 

combining predictions. California, US: Morgan 

& Claypool Publishers. 

Sheppard, C. (2019). Tree-based machine learning 

algorithms. Chicago, US: Independently published. 

Treebupachatsakul, T., Boosamalee, A., Shinnakerdchoke, 

S., Pechprasarn, S., & Thongpance, N. (2022). 

Cuff-less blood pressure prediction from ECG 

and PPG signals using Fourier transformation 

and amplitude randomization preprocessing for 

context aggregation network training. 

Biosensors, 12(3), Article 159. 
https://doi.org/10.3390/bios12030159 

Yang, Y., Yu, D., Piao, W., Huang, K., & Zhao, L. 

(2022). Nutrient-derived beneficial for blood 

pressure dietary pattern associated with 

hypertension prevention and control: Based on 

China nutrition and health surveillance 2015–

2017. Nutrients, 14(15), Article 3108. 
https://doi.org/10.3390/nu14153108



NURYUNARSIH ET AL. 

JCST Vol. 15 No. 4, October-December 2025, Article 140 

15 

 

Appendix 

Table A1 Input Features X 

No Features (X) Type Information 

1. Age 

Age participants 

during study 

Categorical 

Less than 18 years = 1 

18-30 = 2 

31-40 = 3 

41-50 = 4 

51-60 = 5 

More than 61=6 

2. Age of HTN Categorical 

Less than 18 years = 1 

18-30 = 2 

31-40 = 3 

41-50 = 4 

51-60 = 5 

More than 61=6 

3. Age of CVD Categorical 

Less than 18 years = 1 

18-30 = 2 

31-40 = 3 

41-50 = 4 

51-60 = 5 

More than 61=6 

4. Age of Diabetes Categorical 

Less than 18 years = 1 

18-30 = 2 

31-40 = 3 

41-50 = 4 

51-60 = 5 

More than 61= 6 

5. Height Numerical 5-6 

6. BMI(kg/m^2) Categorical 

<18.5 (Underweight) = 1 

18.5-29.9 (Normal Weight) = 2 

25-29.9 (Overweight) = 3 

>30 (Obesity)= 4 

7. BP at that time Categorical 

Normal (130-85) = 1 

High (140/90-160/100) = 2 

Extremely hight (above 

160/100) = 3 

8. Health Categorical 

Poor = 1 

Fair = 2 

Good = 3 

Very good = 4 

 Excellent = 5 

9. Headache Categorical 

Yes = 1 

No = 2 

Sometimes = 3 

10. Dizziness Categorical 
Yes = 1 

No = 2 

11. Blurred vision Categorical 
Yes = 1 

No = 2 

12. Nausea Categorical 

Yes = 1 

No = 2 

Sometimes = 3 

13. Sleep apnea Categorical 
Yes = 1 

No = 2 

14. Pain/Discomfort (neck,jaw,back) Categorical 
Yes = 1 

No = 2 

15. Feeling weak,lightheaded/faint Categorical 
Yes = 1 

No = 2 
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Table A1 Cont. 

No Features (X) Type Information 

16. Chest Pain Categorical 
Yes = 1 

No = 2 

17. Shortness of Breath Categorical 
Yes = 1 

No = 2 

18. Indigestion Categorical 
Yes = 1 

No = 2 

19. Palpitations Categorical 
Yes = 1 

No = 2 

20. Thirst Categorical 
Yes = 1 

No = 2 

21. Dry mouth Categorical 
Yes = 1 

No = 2 

22. Appetite Categorical 
Yes = 1 

No = 2 

23. frequent Urination Categorical 
Yes = 1 

No = 2 

24. Morning Headache Categorical 
Yes = 1 

No = 2 

25. night sweats Categorical 
Yes = 1 

No = 2 

26. Light-headedness Categorical 
Yes = 1 

No = 2 

27. shakiness Categorical 
Yes = 1 

No = 2 

28. foot numbness Categorical 
Yes = 1 

No = 2 

29. Tungling Categorical 
Yes = 1 

No = 2 

30. Foot sores Categorical 
Yes = 1 

No = 2 

31. leg cramping Categorical 
Yes = 1 

No = 2 

32. When were HTN Diagnose Categorical 

<= 1 year = 1 

1-10 years = 2 

11-20 years = 3 

>= 20 years = 4 

33. BP Frequency check Categorical 

on visit to doctor = 1 

Daily = 2 

Weekly = 3 

Monthly = 4 

34. When Diabetes Diagnose Categorical 

3 months = 1 

1 year = 2 

more than 1 year = 3 

more than 3 years = 4  

35. Glucose that time Categorical 

< 99/normal = 1 

100-125/prediabetes = 2 

 >126/higher = diabetes 

36. Frequency of checking DM Categorical 

On visit to doctor = 1 

Daily = 2 

Weekly = 3 

Monthly = 4 

37. Family HTN Categorical 
Yes=1 

No=2 

38. HTN family Specify Categorical 
1st-degree relatives=1 

2nd relatives = 2 
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Table A1 Cont. 

No Features (X) Type Information 

39. Family CVD Categorical 
Yes=1 

No=2 

40. CVD family Specify Categorical 
1st-degree relatives=1 

2nd degree relatives=2 

41. Family Diabetes Categorical 
Yes=01 

No=02 

42. Specify family DM Categorical 
1st-degree relatives=1 

2nd degree relatives=2 

43. Duration of HTN Categorical 

Less or equal to 1 year = 1 

1-10 years = 2 

11-20 years = 3 

More than 20 years = 4 

44. Duration of CVD Categorical 

Less or equal to 1 year = 1 

1-10 years = 2 

11-20 years = 3 

More than 20 years = 4 

45. Duration of Diabetes Categorical 

Less or equal to 1 year = 1 

1-10 years = 2 

11-20 years = 3 

More than 20 years = 4 

46. ACE inhibitors Categorical 
'Zestril' 'Capoten' ‘renitec'=1 

None = 2 

47. ARBs Categorical 

'eziday' 'Xavor' 'losartan’ 

‘avsar’=1  

None = 2 

48. Ca channels block Categorical 

'sofvasc', 'avsar', 

'Norvasc','Adalat' = 1 

None = 2 

49. Diuretics Categorical 

‘Spiromide' ‘Lasix' 

'bepsar''xavor' ‘ditore', ‘carsel' = 

1 

None = 2 

50. B-Blockers Categorical 

'bisoprolol','monitor', 'carvedilol' 

,'carsel', 'concor', 'merol or 

metroprolol', 'atenolol', 

'Mepresor', 'carveda' = 1 

None=2 

51. Combination Categorical 
'zestoretic' ,'CO-Eziday' = 1, 

None=2 

52. Aspirin/noclot/panadol/Disprin Categorical 
Yes=1 

No=2 

53. Warfin Categorical 
Yes=1 

No=2 

54. Lowplate Categorical 
Yes=1 

No=2 

55. Loprin Categorical 
Yes=1 

No=2 

56. Disprin Categorical 
Yes=1 

No=2 

57. Angised Categorical 
Yes=1 

No=2 

58. Ascard Plus Categorical 
Yes=1 

No=2 

59. Cardnit Categorical 
Yes=1 

No=2 
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Table A1 Cont. 

No Features (X) Type Information 

60. Nitromint Categorical 
Yes=1 

No=2 

61. Vastrel Categorical 
Yes=1 

No=2 

62. Naproxen Categorical 
Yes=1 

No=2 

63. Digoxin Categorical 
Yes=1 

No=2 

64. Rolip Categorical 
Yes=1 

No=2 

65. Niglys Categorical 
Yes=1 

No=2 

66. sustac Categorical 
Yes=1 

No=2 

67. Nicorandil Categorical 
Yes=1 

No=2 

68. Gastric pills Categorical 
Yes=1 

No=2 

69. Lipid pills Categorical 
Yes=1 

No=2 

70. Marital Categorical 

Single = 1 

Married = 2 

Married with cousin = 3 

unmarried/divorce = 4 

71. Qualification Categorical 

Illiterate = 1 

Primary = 2 

High school graduate = 3 

Bachelor or higher = 4 

72. Job Categorical 

Military/defence = 1 

Transportation = 2 

Homemaking = 3 

Agriculture = 4 

Retail = 5 

73. Income Categorical 

Unemployed = 1 

500-10000 = 2 

11000-20000 = 3 

21000-30000 = 4 

31000-40000 = 5 

More than 50000 = 6 

74. Members Categorical 

Less than or equal to 5= 1 

6-10 = 2 

11-15 = 3 

75. CAR Categorical 
Yes = 01 

No = 02 

76. House Categorical 
Yes = 01 

No = 02 

77. Physical Activity Categorical 

Yes = 1 

No = 2 

sometime = 3 

78. Family Structure Categorical 
Single = 1 

Both = 2 

79. Home Environment Categorical 
Pleasant = 01 

Tense = 01 
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Table A1 Cont. 

No Features (X) Type Information 

80. Diet plan Categorical 

Yes = 1 

No = 2 

sometime = 3 

81. meals/day Categorical 

1 time/day = 1 

2 times/day = 2 

3 times/day = 3 

82. salt type Categorical 
Iodized =1 

Non- iodized = 2 

83. fat diet Categorical 
Yes = 1 

No = 2 

84. Milk Categorical 

N = 1 

Occasionally = 2 

Sometime = 3 

Mostly = 4 

Daily = 5 

Unsure = 6 

85. Eggs Categorical 

N = 1 

Occasionally = 2 

Sometime = 3 

Mostly =4 

Daily =5  

Unsure= 6  

86. Meat Categorical 

N = 1 

Occasionally = 2 

Sometime = 3 

Mostly = 4 

Daily = 5  

Unsure = 6 

87. Chicken Categorical 

N = 1 

Occasionally = 2 

Sometime = 3 

Mostly = 4 

Daily =5  

Unsure = 6 

88. Fish Categorical 

N = 1 

Occasionally = 2 

Sometime = 3 

Mostly = 4 

Daily = 5 

Unsure = 6 

89. Pulses Categorical 

N =1 

Occasionally = 2 

Sometime = 3 

Mostly = 4 

Daily = 5 

Unsure = 6 

90. Vegetable Categorical 

N =1 

Occasionally = 2 

Sometime = 3 

Mostly = 4 

Daily = 5 

Unsure = 6 
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Table A1 Cont. 

No Features (X) Type Information 

91. Fruits Categorical 

N = 1 

Occasionally = 2 

Sometime = 3 

Mostly = 4 

Daily = 5 

Unsure = 6 

92. Chest pain Categorical 
Yes = 1 

No = 2 

93. SBP when diagnose or before medication Continues (mmHg) 100-234 

94. DBP when diagnose or before medication Continues (mmHg) 70-120 

95. SBP after prescribed medication Continues (mmHg) 100-200 

96. DBP after prescribed medication Continues (mmHg) 60-110 

 

Table A2 Output features y1 and y2  

Feature Type Information 

Decrease of Systolic blood 

pressure after medication 

Nominal Systolic blood pressure decreased after taking 

medicines:  

1. Yes, decreased  

2. No, not decrease 

Decrease of Diastolic blood 

pressure after medication 

Nominal Diastolic blood pressure decreased after taking 

medicines:  

1. Yes, decreased  

2. No, not decrease 

 

Table A3 Pearson correlation between dependent and independent variable for decrease of diastolic blood pressure 

No Feature Correlation Rank 

1. DBP after prescribed medication 0.490 1 

2. DBP when diagnose or before medication 0.433 2 

3. Morning Headache 0.229 3 

4. foot numbness 0.228 4 

5. shakiness 0.222 5 

6. Fish 0.222 6 

7. SBP 0.220 7 

8. Lightheadedness 0.218 8 

9. Sleep apnea 0.210 9 

10. Income 0.208 10 

11. night sweats 0.206 11 

12. Palpitations 0.201 12 

13. Foot sores 0.196 13 

14. Height 0.192 14 

15. leg cramping 0.186 15 

16. Pain/Discomfort (neck,jaw,back) 0.186 16 

17. Vegetable 0.175 17 

18. Age 0.174 18 

19. Members 0.165 19 

20. Specify family DM 0.161 20 

21. fat diet 0.157 21 

22. When were HTN Diagnose 0.157 22 

23. Frequency of checking DM 0.157 23 
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Table A3 Cont. 

No Feature Correlation Rank 

24. frequent Urination 0.156 24 

25. Blurred vision 0.153 25 

26. When Diabete Diagnose 0.151 26 

27. Age of Diabetes 0.148 27 

28. BP at that time 0.147 28 

29. Family Diabetes 0.145 29 

30. Qualification 0.144 30 

31. Duration of HTN 0.137 31 

32. Home Env 0.133 32 

33. Thirst 0.133 33 

34. Dry mouth 0.131 34 

35. Tungling 0.130 35 

36. Warfin 0.128 36 

37. CVD family Specify 0.127 37 

38. Eggs 0.125 38 

39. HTN family Specify 0.121 39 

40. meals/day 0.120 40 

41. Health 0.118 41 

42. Dizziness 0.114 42 

43. Family CVD 0.113 43 

44. Apetite 0.109 44 

45. Fruits 0.108 45 

46. Glucose that time 0.105 46 

47. Duration of Diabetes 0.100 47 

48. Digoxin 0.100 48 

49. Indigestion 0.099 49 

50. Family HTN 0.097 50 

51. Aspirin/noclot/panadol/Disprin 0.097 51 

52. Headache 0.091 52 

53. SBP_Before 0.090 53 

54. Diet plan 0.086 54 

55. Loprin 0.084 55 

56. Nicorandil 0.083 56 

57. Disprin 0.082 57 

58. Naproxen 0.082 58 

59. Niglys 0.082 59 

60. salt type 0.081 60 

61. House 0.079 61 

62. AGE of HTN 0.078 62 

63. Vastrel 0.076 63 

64. Nitromint 0.076 65 

65. Cardnit 0.075 66 

66. B-Blockers 0.074 67 

67. Angised 0.073 68 

68. Ascard Plus 0.072 69 

69. Chiken 0.071 70 

70. Breath 0.071 71 

71. Family Struct 0.068 72 

72. Combination 0.065 73 

73. Milk 0.061 74 

74. Lowplate 0.061 75 
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Table A3 Cont. 

No Feature Correlation Rank 

75. sustac 0.056 76 

76. Treatment 0.054 77 

77. Chest pain 0.052 78 

78. Age of CVD 0.052 79 

79. Rolip 0.052 80 

80. BP Frequency check 0.051 81 

81. Meat 0.050 82 

82. Job 0.049 83 

83. ARBs 0.048 84 

84. Pulses 0.046 85 

85. Gastric pills 0.044 86 

86. Feeling weak,lightheaded/faint 0.042 87 

87. Duration of CVD 0.040 88 

88. CAR 0.036 89 

89. Diuretics 0.035 90 

90. ACE inhib 0.024 92 

91. Physical Activity 0.019 93 

92. Marital 0.017 94 

93. Nausea 0.011 95 

94. BMI(kg/m^2) 0.007 96 

95. Lipid pills 0.003 97 

96. Ca channels block 0.001 98 

 

Table A4 Pearson correlation between dependent and independent variable for decrease of systolic blood pressure in patients  
No Feature Correlation Rank 

1. SBP after prescribed medication 0.477 1 

2. SBP when diagnose or before medication 0.430 2 

3. DBP 0.267 3 

4. Dry mouth 0.208 4 

5. Tungling 0.180 5 

6. Morning Headache 0.177 6 

7. Vegetable 0.176 7 

8. Members 0.165 8 

9. Headache 0.159 9 

10. Thirst 0.157 10 

11. night sweats 0.155 11 

12. shakiness 0.150 12 

13. B-Blockers 0.140 14 

14. Foot sores 0.139 15 

15. Lightheadedness 0.135 16 

16. foot numbness 0.132 17 

17. frequent Urination 0.132 18 

18. Lipid pills 0.128 19 

19. leg cramping 0.121 20 

20. CAR 0.119 21 

21. ARBs 0.118 22 

22. Lowplate 0.113 23 

23. Aspirin/noclot/panadol/Disprin 0.112 24 

24. When Diabete Diagnose 0.112 25 

25. Age 0.111 26 

26. Sleep apnea 0.104 27 
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Table A4 Cont. 

No Feature Correlation Rank 

27. AGE of HTN 0.104 28 

28. Ca channels block 0.103 29 

29. Home Env 0.100 30 

30. Milk 0.099 31 

31. Nitromint 0.098 32 

32. Duration of Diabetes 0.094 33 

33. BMI(kg/m^2) 0.091 34 

34. Diet plan 0.089 35 

35. Physical Activity 0.089 36 

36. Combination 0.087 37 

37. BP at that time 0.085 38 

38. Blurred vision 0.083 39 

39. Apetite 0.082 40 

40. Fish 0.081 41 

41. Job 0.079 42 

42. Glucose that time 0.078 43 

43. Family Struct 0.077 44 

44. Age of CVD 0.075 45 

45. Cardnit 0.075 46 

46. Gastric pills 0.074 47 

47. Age of Diabetes 0.074 48 

48. Nausea 0.073 49 

49. Height 0.072 50 

50. Rolip 0.070 51 

51. Frequency of checking DM 0.068 52 

52. Disprin 0.066 53 

53. Naproxen 0.066 54 

54. Niglys 0.066 55 

55. Dizziness 0.065 56 

56. Marital 0.063 57 

57. Health 0.063 58 

58. Angised 0.060 60 

59. ACE inhib 0.059 61 

60. DBP_Before 0.058 62 

61. Palpitations 0.058 63 

62. Loprin 0.055 64 

63. Digoxin 0.055 65 

64. Warfin 0.054 66 

65. Nicorandil 0.051 67 

66. Vastrel 0.049 68 

67. Chiken 0.048 69 

68. meals/day 0.046 70 

69. Breath 0.046 71 

70. Pain/Discomfort (neck,jaw,back) 0.044 72 

71. sustac 0.041 73 

72. Ascard Plus 0.040 74 

73. Meat 0.038 75 

74. Qualification 0.036 76 

75. Income 0.036 77 

76. fat diet 0.034 78 

77. Specify family DM 0.029 79 
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Table A4 Cont. 

No Feature Correlation Rank 

78. salt type 0.028 80 

79. When were HTN Diagnose 0.021 81 

80. Eggs 0.020 82 

81. Family CVD 0.019 83 

82. Feeling weak,lightheaded/faint 0.017 84 

83. Fruits 0.016 85 

84. Chest Pain 0.015 86 

85. HTN family Specify 0.014 87 

86. Family HTN 0.014 88 

87. Family Diabetes 0.013 89 

88. House 0.011 90 

89. Duration of HTN 0.011 91 

90. BP Frequency check 0.009 92 

91. Diuretics 0.007 93 

92. Duration of CVD 0.007 94 

93. Chest pain 0.006 95 

94. Pulses 0.005 96 

95. Indigestion 0.003 97 

96. CVD family Specify 0.001 98 

 


