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Abstract

Hypertension represents a complex condition that substantially increases the global cardiovascular disease burden and
related deaths. This study compares three tree-based machine learning approaches-Decision Tree (DT), Random Forest (RF),
and eXtreme Gradient Boosting (XGBoost)-using 96 multi-domain features to predict reductions in both systolic and diastolic
blood pressure following antihypertensive treatment in patients with varying comorbidity profiles. Our approach utilizes paired
t-test analyses to examine blood pressure changes before and after medication across different patient categories, while
employing comprehensive decision tree visualisation to create interpretable decision pathways that identifying predictive
associations between medications and blood pressure outcomes. Analysis of 160 patients indicated significant blood pressure
improvements in all studied patient groups, with systolic blood pressure reductions showing statistical significance (p =0.001)
and diastolic blood pressure changes demonstrating similar significance levels (p = 0.02). The Decision Tree method showed
optimal performance for systolic blood pressure prediction, recording 93% F1-score and 83% AUC values, whilst Random
Forest demonstrated excellence performance in diastolic blood pressure prediction with 98% F1-score and 92% AUC.
XGBoost performed less effectively than the other two algorithms across metrics. Through decision tree analysis, we identified
strong predictive associations between diuretics and ACE inhibitors with systolic blood pressure reduction, whilst nitrate
compounds and combined medication regimens showed significant predictive relationships with diastolic blood pressure
decrease. The machine learning models successfully integrated diverse patient characteristics across multiple domains,
including demographics, clinical parameters, lifestyle factors, and socioeconomic determinants. Our findings from this 160-
patient cohort demonstrate the clinical utility of interpretable machine learning models for medication response prediction,
providing valuable insights that can guide personalized antihypertensive therapy selection and inform clinical decision-making
through data-driven treatment approaches.
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1. Introduction

Hypertension represents one of the most
significant modifiable risk factors for cardiovascular
disease, affecting approximately one-third of the
global population and contributing substantially to
cardiovascular morbidity and mortality worldwide
(Mills et al., 2020). The clinical management of
hypertension becomes increasingly complex when
patients present with comorbidities such as
cardiovascular disease and diabetes, necessitating
personalized treatment approaches that consider
multiple patient factors simultaneously (Elendu et al.,
2024). However, predicting individual patient
responses to specific medications remains challenging
due to the multifactorial nature of blood pressure
regulation and the complex interplay between patient
characteristics, comorbidities, and treatment efficacy
(Treebupachatsakul et al., 2022; Panyamit et al., 2022).

Machine learning approaches have shown
promise in hypertension management, with previous
studies employing various algorithms for treatment
prediction. Existing investigations have primarily
focused on general hypertension prediction or single-
algorithm approaches. Nuryunarsih et al. (2023) found
that logistic regression and neural networks performed
better in Indonesian hypertensive patients (Nuryunarsih
et al., 2023), while other studies have utilised RFECV
and XGBoost for treatment outcomes (Chang et al.,
2019). However, these approaches have shown limited
attention to comparative analyses of tree-based methods
for predicting both systolic and diastolic blood pressure
responses in patients with multiple comorbidities.

This study addresses a critical research gap by
being the first to employ three tree-based machine
learning algorithms Decision Tree (DT), Random
Forest (RF), and XGBoost to predict both SBP and
DBP reductions following antihypertensive treatment
in hypertensive patients with cardiovascular and diabetic
complications. Our novel approach incorporates 96
features spanning clinical parameters, sociodemographic
characteristics, lifestyle factors, and medication profiles
to create comprehensive predictive models. Importantly,
we provide interpretable decision tree visualizations
that illustrate medication-specific pathways for blood
pressure reduction, offering clinically actionable
insights for personalized treatment selection. To our
knowledge, this represents the first investigation to
combine such an extensive multi-domain feature set
with comparative tree-based algorithm analysis,
whilst providing interpretable decision support tools
for antihypertensive medication optimisation in
complex patient populations.

2. Objective

This study aims to predict decreases in systolic
blood pressure (SBP) and diastolic blood pressure
(DBP) in hypertensive patients with cardiovascular
and diabetic complications following antihypertensive
medication treatment using three tree-based machine
learning algorithms: Decision Tree (DT), Random
Forest (RF), and XGBoost. Specifically, we will: (1)
develop and compare the predictive performance of
DT, RF, and XGBoost models using 96 clinical and
demographic features, measuring accuracy, sensitivity,
specificity, and AUC; (2) identify the most influential
features contributing to blood pressure reduction and
quantify their relative importance; (3) visualize
decision pathways through decision tree models to
illustrate how different antihypertensive medications
and patient characteristics influence blood pressure
reduction; and (4) provide interpretable decision rules
to guide clinicians in selecting optimal treatment
strategies for patients with these comorbidities. This
research addresses a current gap in the literature, as no
previous study has examined SBP and DBP reduction
using these specific algorithms while providing
clinical decision support through visualization of
antihypertensive medication effects.

3. Methods and Analysis

This cross-sectional study was conducted on
160 hypertensive patients admitted to or visiting
Fauji Foundation Hospital, Rawalpindi, with ethical
approval from the Research Ethics Committee of Pir
Mehr Ali Shah Arid Agriculture University, Rawalpindi.
Participants aged > 19 years with diagnosed
hypertension- with or without cardiovascular disease
or diabetes-were included based on symptoms of high
blood pressure, such as headache, dizziness, blurred
vision, chest pain, shortness of breath, nausea, and
sleep apnea. Hypertension was defined as three
measured values of systolic blood pressure > 140
mmHg or diastolic blood pressure > 90 mmHg, or
current use of antihypertensive medication. Written
informed consent (in English/Urdu) was obtained
from all participants after they were briefed about the
study purpose and protocol.

Patient data were collected using a structured
questionnaire specifically developed for this study,
encompassing demographics (age, gender, home
location, education, occupation), clinical symptoms,
medication history, hereditary factors, dietary habits,
lifestyle factors, socioeconomic status, smoking
habits, and biometric information (height, weight,
BMI). The primary outcomes were defined as binary
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variables representing clinically meaningful reductions
in systolic blood pressure (SBP) and diastolic blood
pressure (DBP) following antihypertensive treatment.
A reduction was defined as follows: SBP decrease > 10
mmHg from baseline to post-treatment, and DBP
decrease > 5 mmHg from baseline to post-treatment.

These targeted binary thresholds were
established through a review of current clinical
evidence demonstrating clinically significant blood
pressure improvements. Research indicates that
systolic reductions of 10 mmHg or greater correlate
with substantial decreases in cardiovascular events,
including a 20% lower incidence of coronary heart
disease (Hong, 2017). Correspondingly, diastolic
reductions of 5 mmHg represent meaningful
therapeutic benefits in cardiovascular risk mitigation
(Canoy et al., 2022).

The dataset was systematically organized and
divided using machine learning techniques into input
features (X) and binary output labels representing
reductions in SBP (yi) and DBP (y2), with
comprehensive details provided in Tables 1 and 2.
Three tree-based machine learning models were
applied Decision Tree (DT), Random Forest (RF), and
XGBoost to predict blood pressure reductions using
various Python libraries including pandas, scikit-
learn, NumPy, and matplotlib. Specifically,
DecisionTreeClassifier and RandomForestClassifier
algorithms from the scikit-learn library were utilised
for DT and RF respectively, while XGBClassifier
from the xgboost library was employed for XGBoost
analysis. Decision tree visualisation was performed
using Graphviz and Pydotplus libraries. Data analysis
was conducted using exploratory techniques in
Jupyter Notebook, and model performance evaluated
using standard classification metrics.

3.1 Data Preparation and Sample Size
Considerations

We processed survey responses from 160
participants, converting textual data into numerical,
scaled datasets suitable for machine learning analysis.
Missing data handling was performed systematically:
one missing age entry was imputed using the median
age value, while missing blood pressure values were
addressed using established clinical ranges with mean
or median imputation within these ranges to ensure
data completeness and accuracy. We investigated the
correlations between dependent and independent
variables to understand their impact on both systolic
and diastolic blood pressure reductions. Information

about the input and output features is provided in
Appendix Tables A1 and A2.

Our study's sample size of 160 participants
with 96 predictor features aligns with established
statistical guidelines for developing robust predictive
models with binary outcomes. When building
predictive models, the relationship between sample
size (n), number of outcome events (E), and predictor
parameters (p) is crucial for model reliability. According
to methodological standards, adequate sample size
should satisfy three key criteria: (1) minimal optimism
in effect estimates, indicated by a global shrinkage
factor > 0.9; (2) negligible overfitting, demonstrated
by a difference < 0.05 between apparent and adjusted
model performance (Nagelkerke's R?), and (3) precise
population risk estimation (Riley et al., 2020). In our
study, with approximately 80% of participants
experiencing blood pressure reductions (128 events
for SBP, 130 for DBP), we achieved an events-per-
predictor (EPP) ratio of approximately 1.3-1.4. While
traditional rules suggest 10-20 EPP, recent research
indicates that lower EPP ratios can be acceptable
when using machine learning algorithms with
appropriate regularization and cross-validation
techniques.

The 96 features included in this study were
comprehensively selected through a systematic
approach combining literature review and clinical
expertise. A structured questionnaire was specifically
developed for this research based on an extensive
review of existing literature on hypertension
prediction and treatment response. The questionnaire
content and feature selection were validated through
consultations with three clinical professors
specializing in cardiovascular medicine and
hypertension management.

All questionnaire items were retained as
features to ensure comprehensive coverage of relevant
clinical, demographic, and therapeutic variables
without loss of potentially important predictive
information. This approach was chosen over
automated feature reduction techniques (such as PCA,
LASSO, or mRMR) to maintain clinical interpretability
and ensure that all expert-identified variables were
available for analysis. The decision to include the full
feature set was further supported by our use of tree-
based algorithms, which inherently perform feature
selection through their splitting mechanisms and can
handle high-dimensional data effectively while
identifying the most predictive variables through
built-in importance rankings.
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3.2 Model Development and Validation Strategy

Our use of tree-based algorithms (Decision
Trees, Random Forest, XGBoost) with built-in feature
selection and pruning mechanisms helps mitigate
overfitting concerns. The 96 features were carefully
selected to comprehensively capture relevant clinical,
demographic, and therapeutic variables, allowing for
nuanced prediction of treatment response while
maintaining statistical validity through rigorous
validation procedures. Multicollinearity among
features was assessed using correlation analysis, with
highly correlated features (correlation coefficient > 0.9)
identified and addressed to prevent redundancy in the
models. The binary classification targets (SBP/DBP
reduction: yes/no) were assessed for class balance,
and with 80% of participants showing reductions,
class imbalance was addressed through appropriate
weighting techniques during model training. We
employed k-fold cross-validation (k = 5) to ensure
robust model evaluation and prevent overfitting to
specific data partitions. Hyperparameters were
optimized using grid search with cross-validation to
identify optimal model configurations. Performance
metrics were calculated per class with confidence
intervals reported across cross-validation folds to
establish  statistical reliability, whilst feature
importance was calculated using built-in tree-based
importance rankings to identify key predictors of
blood pressure reductions.

3.3 Decision Tree

Decision Trees (DT) are widely used in data
mining to discover patterns and extract insights from
data. Once constructed, a DT can predict outcomes for
new data based on patterns learned from the training
dataset. Essentially, a DT serves as a structured
framework for storing and applying learned
experiences (Sheppard, 2019). In this study, we
developed classification models to predict whether
patients would experience decrease in systolic blood
pressure (SBP) or diastolic blood pressure (DBP)
based on available features. Our dataset comprised
160 participants with 96 features, encompassing
demographic information, health status, medications,
symptoms, hereditary factors, and dietary habits. Our
objective was twofold: to train the algorithm to
identify blood pressure reductions and to visualize the
decision pathways that lead to SBP and DBP
decreases following antihypertensive treatment.

We employed the Classification and Regression
Trees (CART) algorithm, which is implemented in
Scikit-Learn (Sheppard, 2019). Unlike other decision

tree algorithms such as ID3 and C4.5 (developed by
Quinlan), CART handles both categorical and
continuous variables and incorporates pruning
techniques to prevent overfitting.

CART is one of several decision tree
algorithms, alongside others like ID3 and C4.5. While
ID3 (developed in the 1980s) and its successor C4.5
use entropy as their splitting criterion, CART uses the
Gini index (Che et al., 2011). The underlying principle
is similar across these algorithms: they recursively
partition data into subgroups based on available
attributes using specific splitting criteria. Both
entropy and the Gini index quantify the impurity of
data partitions, where lower values indicating greater
homogeneity within groups. An entropy value of 0
represents perfectly homogeneous data, while a value
of 1 indicates maximum randomness (equal distribution
between classes) (Fernandez et al., 2016; Géron, 2017).
We selected the Gini index for our study because it
directly measures the probability of misclassification,
making it particularly suitable for our binary
classification problem (Rahmati et al., 2022). In our
clinical application, these subgroups represent
hypertensive patients with varying comorbidity
profiles, including cardiovascular disease (CVD) and
diabetes complications.

The primary advantage of DTs lies in their
interpretability and transparent decision-making
process. They excel at revealing patterns in complex
datasets that lead to specific outcomes. However, this
transparency comes with potential limitations,
particularly when dealing with imbalanced data where
the algorithm may favor majority classes while
fragmenting minority classes. To mitigate this bias,
we considered ensemble methods, such as bagging
and boosting, which combine multiple decision trees
to create more robust and balanced predictions
(Fernandez et al., 2016).

3.4 Random Forest

To overcome the limitations of decision trees, we
used an ensemble method called Random Forest. The
idea is to build multiple decision tree models and
combine their results. We can use the “Sklearn.ensemble
module” in “SCikit-Learn”, which provides the
“ens.RandomForestClassifier ” for creating Random
Forest models. Random Forests are designed to create a
more robust model by utilizing multiple decision trees, a
technique known as bagging or bootstrap aggregation.
This approach helps overcome overfitting and reduces
bias by considering multiple prediction results
(Sheppard, 2019).
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3.5 Boosting

Boosting is another ensemble method where
predictions are made in stages and sequentially to
achieve better results (Seni & Elder, 2010). This is
different from Random Forests, which combine the
results of many models built and executed in parallel
(Kaur et al., 2022). In this study, we used XGBoost,
which is one implementation of boosting. Scikit-learn
also provides several implementations of XGBoost
for machine learning algorithms. Our dataset
containing 96 features across multiple domains
(clinical, demographic, lifestyle, socioeconomic),
likely involves complex non-linear relationships and
feature interactions that tree-based methods naturally
capture  without requiring extensive feature
engineering or transformation.

3.5.1 Measuring the Performance of the Model
There are many ways to measure the
performance of the model that we made as shown in
Figure 1, we will start with the confusion matrix,
which includes true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN).

Actual

Positive ‘ Negative |
Positive | TP FP
Prediction Negative | FN ™

Figure 1 Confusion matrix for model prediction
performance

True positive (TP) refers to when the model
successfully predicts a positive outcome because the
actual outcome is indeed positive. It means that the
model correctly identifies instances as positive when
they are actually positive.

True negative (TN) refers to when the model
correctly predicts a negative outcome because the
actual outcome is indeed negative. It means that the
model accurately identifies instances as negative
when they are actually negative.

False positive (FP) refers to when the model
incorrectly predicts a positive outcome when the
actual outcome is negative. It means that the model
mistakenly identifies instances as positive when they
are actually negative.

False negative (FN) refers to when the model
incorrectly predicts a negative outcome when the
actual outcome is positive. It means that the model
fails to identify instances as positive when they are
actually positive.

3.5.2 Accuracy

Accuracy measures how often the model
correctly predicts both positive and negative
outcomes. It represents the overall correctness of the
model’s predictions, considering both false positives
and false negatives. It is calculated by dividing the
total number of correct predictions (true positives and
true negatives) by the total number of instances in the
dataset.

TP+TN

Accuracy = T FPTEN

3.5.3 Precision

Precision, also known as positive predictive value,
measures the proportion of correctly predicted positive
instances out of all instances predicted as positive. It
focuses on the accuracy of positive predictions.

7P 1P
Total positive prediction ~ TP+FP

Precision =

3.5.4 Sensitivity (Recall)

Sensitivity, also known as recall or true
positive rate, measures the proportion of correctly
predicted positive instances out of all actual positive
instances. It focuses on the ability of the model to
correctly identify positive instances.

P P

Sensitivity = _
ensitivity Total positive actual ~TP+FN

3.5.5 Area under the Curve

AUC, which stands for Area Under the Curve,
refers to the area under the Receiver Operating
Characteristic (ROC) curve. The ROC curve plots the
true positive rate (sensitivity) against the false
positive rate. AUC measures how effectively the
model distinguishes between positive and negative
instances. A higher AUC value indicates better overall
model performance in terms of classification
accuracy.

3.5.6 F1-Score

The Fl-score formula is calculated using the
formula:

F1=(2 x Precision x Recall) / (Precision + Recall).

This metric combines both precision and recall
(sensitivity) into a single value, providing a balanced
evaluation of the model's performance
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3.7 Analysis

In this research, we applied statistical methods
and machine learning models. First, we compared
systolic blood pressure before and after treatment
using a paired t-test. Then, we implemented Decision
Tree (DT), Random Forest (RF), and XGBoost
models, developed using Python 3.7. The paired t-test
was conducted using the scipy.stats library, while
model training and evaluation were performed with
scikit-learn (version 0.21.2). To evaluate different
machine learning methods, the dataset was divided
into a training set and a testing set, with 80% of the
data randomly allocated for training and the
remaining 20% used for testing.

3.8 Ethical Approval

Participants received a comprehensive
explanation of the study's purpose and procedures
before providing their written consent in either
English or Urdu. The study population consisted of
patients evaluated at Military Hospital (MH)
Rawalpindi and Fauji Foundation Hospital (FFH)
Rawalpindi, Pakistan.

This research adhered to the principles outlined
in the Declaration of Helsinki (2013 revision). The
Ethics Committee of Pir Mehr Ali Shah Arid
Agriculture University Rawalpindi granted institutional
approval for this study involving human subjects
(Approval No. PMAS-AAUR/1406). All participants
provided informed consent prior to enrollment.

4. Result
4.1 Descriptive statistics

Table 1 presents descriptive statistics for 160
participants with varying conditions: hypertension
(HTN), hypertension with cardiovascular disease
(HTN-CVD), hypertension with diabetes (HTN-DM),
and a combination of all three (HTN-CVD-DM).
Participant ages ranged from 13 to 72 years. The
youngest diagnosed hypertensive patient was 13,
while the oldest was 72. In the HTN-CVD group, ages
ranged from 19 to 60, and among patients with diabetes,
from 26 to 57. The average age at first diagnosis was
45 years for HTN, 46 for CVD, and 44 for diabetes.

Appendix Table A3 analyzed the connection
between different factors and the decrease in DBP.
The variables with the strongest correlation were DBP
before and after therapy, followed by morning
headache, foot numbness, shakiness, regular fish
consumption, systolic blood pressure after therapy,
and light-headedness.

Appendix Table A4 examined the relationships
between different features and decreases in SBP. The
most strongly correlated variables were systolic blood
pressure before and after therapy, followed by diastolic
blood pressure, dry mouth, tingling sensation,
morning headache, regular vegetable consumption,
family history of hypertension, and headache.

Table 2 shows the results of the paired t-test
analysis, which revealed significant differences
between SBP and DBP values before and after
medication: SBP (p = 0.001) and DBP (p = 0.022),
with a significance level of 0.05.

Table 1 Descriptive statistics for participants HTN, HTN-CVD, HTN-DM, HTN-CVD-DM patients

Age AGE of HTN Age of CVD Age of Diabetes
Count 160 160 139 62
mean 52 45.2 46.8 443
std 8.6 9.8 8.8 7.6
min 19 13 19 26
25% 48 40 41 39.2
50% 53.5 48 49 45
75% 59 52 54 50
max 72 60 60 57

Table 2 Analysing the SBP and DBP before and after taking antihypertensive medications using a t-test

Before taking After taking Mean
Variable meds meds Diff 95% CI Paired t_test p-value®
Mean = SD
Hypertension Systolic 146.7 £16.30 141.2+15.8 5.5 (2.2-8.8) 0.001*
(mmHg) Diastolic 91.4+8.2 89.3+£9.8 2.1 (0.3-3.8) 0.022%*

* Significant at 0.05 level, * paired ¢-fest

Note: The confidence intervals shown are for the mean difference between before and after treatment values.
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Blood Pressure Distribution Before and After Medication Therapy
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Figure 2 Violin plots showing systolic blood pressure (SBP) and diastolic blood pressure (DBP) values before and

after therapy (mmHg)

Figure 2 shows the violin plot comparing SBP
and DBP values before and after therapy. It illustrates
the impact of the given medication on reducing SBP
and DBP levels. The y-axis represents blood pressure
in mmHg. The graph highlights slight differences in
both SBP and DBP before and after medication.

4.2 Prediction Model for a Decrease in Diastolic
and Systolic Blood Pressure

The parallel coordinates plot in Figure 3

compares three machine learning algorithms for

classification. The Decision Tree model achieved the
highest overall average performance (88.8%) with
the best metrics in Accuracy (90%), Sensitivity
(90%), and AUC (83%). Random Forest followed
with a strong average performance (87.6%) and the
highest F1-score (93%). In contrast, XGBoost
performed comparatively lower, with an overall
average of 81.4% and a notably poor F1-score (68%),
despite showing similar Precision scores across all
three algorithms.
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Figure 3 Parallel coordinates plot comparing performance metrics of three machine learning algorithms for classifying de-
creases in systolic blood pressure (SBP)
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This parallel coordinates plot in Figure 4 com-
pares three algorithms (Decision Tree, Random For-
est, and XGBoost) across five performance metrics in
term of decrease of diastolic blood pressure, with Ran-
dom Forest demonstrating superior overall perfor-
mance (95.6% average) compared to Decision Tree
(93.4%) and XGBoost (82.8%). Random Forest ex-
cels particularly in Accuracy (97%), Precision (96%),
and F1-Score (98%), while maintaining strong perfor-
mance in Sensitivity (95%) and AUC (92%, tied with
Decision Tree). XGBoost significantly underperforms
in F1-Score (68%) compared to the other algorithms
(96-98%), while all three models show their strongest

metrics in different areas - Random Forest in F1-Score
(98%), Decision Tree in F1-Score (96%), and
XGBoost in Accuracy (90%).

Figure 5 illustrates the AUC values that reflect
how the various classifiers are performing. A higher
AUC signifies better predictive ability. DT leads with
the highest AUC of 0.83, followed by RF with AUCs
of 0.82. XGBoost trails with the lowest AUC of 0.82.

Figures 5 and 6 show the area under the curve
(AUC) c-statistic for predicting SBP and DBP if the
value is near 1, it means the model is almost perfect,
but if the AUC c-statistic is below 0.5 means not a
good model.

ROC Curve Comparison for SBP Decrease Prediction Models
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Figure 5 The AUC values that reflect how the various classifiers are performing
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Decision tree in Figure 7 shows factors
associated with reductions in systolic blood pressure
(SBP) based on medication usage patterns. These
patterns represent statistical associations rather than
causal relationships. In this study, we can observe that
the machine learning process considers the most
statistically important feature to be whether the
participant does not consume diuretics. Out of 124
patients, 4 individuals did not experience a decrease
in systolic blood pressure, while 120 individuals did
experience a decrease. If we further analyse the data,
in the next branch, if the patient does not consume
diuretics, the decision tree tests whether the patient
does not use ACE inhibitors as their treatment. In this
case, there are 57 patients who do not use ACE
inhibitors, and among them, 14 individuals do not use
Ascard Plus. Then, in the next branch, the decision
tree tests whether the patient uses f-blockers. Among
those who do not use diuretics, Ascard Plus, and f3-
blockers, there are 2 individuals whose blood pressure
decreases.

In the analysis of patients who use diuretics on
the right branch, we can observe more subdivisions.

True

alse

We can see that out of the patients who use diuretics,
3 individuals did not experience a decrease in blood
pressure, while 62 did. From this, we can conclude
that there are a total of 12 leaf nodes consisting of
individuals whose blood pressure decreased, and 3
leaf nodes involving those whose blood pressure did
not. If sorted from top to bottom, we can see that the
statistically important factors identified by the
machine learning decision tree in this study are the
consumption of diuretics, ACE inhibitors, Nitromint,
Ascard Plus, angised, [-blockers, combination
medications, and Cardnit, according to their respective
branches. It is important to note that these represent
correlational patterns within our dataset, not
established causal efficacy rankings. This
interpretation also applies to the graph showing the
decrease in diastolic blood pressure (Figure 8) below.
This decision tree analysis helps us understand the
statistical relationships between different variables
and their association with decrease in systolic and
diastolic blood pressure.

Figure 7 Decision tree showing factors associated with a decrease in systolic blood pressure based on medication usage
patterns

10
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suslac<=15
gini=05

Figure 8 Decision Tree Decrease DBP information

In our study, using a decision tree to train the
model, we found that four patients did not have lower
SBP. Patient 1 does not consume sustac, B-blockers,
Ascard Plus, ACE inhibitors, or diuretics. Patients 2
and 3 take Cardit, angised, and Nitromint but not
diuretics. Additionally, patient 3, who also does not
have a decrease their SBP, does not take lipid pills,
cardnit or angised, but takes aspirin/panadol/disprin
and diuretics. The decision tree visualisation for SBP
prediction is shown in Figure 8, illustrating the
hierarchical statistical importance and decision
pathway. Regarding DBP, there were also four
patients who did not lower their blood pressure.
Patients 1 and 2 do not consume Nitromint or angised.
Patient 3 does not consume lipid pills, angised, but
consumes diuretics, aspirin/panadol/disprin, and
nitromint. Patient 4 does not consume Sustac,
diuretics, B-blockers, ACE inhibitors, or Nitromint.

11

4.3 Discussion

This study evaluated tree-based machine
learning models Decision Tree (DT), Random Forest
(RF), and XGBoost to predict reductions in systolic
(SBP) and diastolic blood pressure (DBP) in
hypertensive  patients, including those with
cardiovascular disease and diabetes. A key innovation
of our approach was the integration of 96 multi-
domain features, revealing previously unrecognized
predictive patterns. Among these features, the most
predictive for SBP reduction included pre/post SBP
readings, dry mouth, tingling sensation, and vegetable
intake, while for DBP, the top predictors were pre/post
DBP values, morning headache, shakiness, and fish
consumption.

Our findings demonstrate superior
interpretability compared to traditional approaches.
DT achieved the best performance for SBP prediction
(F1-score: 93%, accuracy: 90%), while RF excelled in
DBP prediction (F1-score: 98%, accuracy: 97%).
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XGBoost underperformed in both tasks. These results
differ markedly from prior studies by Nuryunarsih et
al. (2023), who found that logistic regression and
neural networks performed better in Indonesian
hypertensive patients (Nuryunarsih et al., 2023). This
discrepancy reveals an important methodological
insight: our study's inclusion of detailed symptom
profiles (dry mouth, tingling sensations) and dietary
factors (vegetable and fish consumption) provided
tree-based models with interpretable decision
pathways that traditional statistical methods could not
effectively utilize.

The interpretability of our decision tree models
revealed clinically meaningful medication hierarchies
that extend beyond existing knowledge. For SBP
reduction, diuretics emerged as the primary splitting
feature, followed by ACE inhibitors and Nitromint.
Notably, for DBP reduction, Nitromint ranked as the
most important feature, followed by Angised and
ACE inhibitors, suggesting distinct therapeutic
pathways for diastolic versus systolic control a
differentiation not clearly established in previous
literature. These findings align with established
treatment guidelines (Al-Makki et al., 2022) but
provide quantitative evidence of medication
importance rankings in our diverse patient population
comprising hypertension-only, hypertension with
cardiovascular complications, and hypertension with
diabetes.

A unique contribution of our study is the
identification of non-traditional predictive factors.
Beyond conventional clinical parameters, dietary
factors emerged as significant predictors: regular fish
consumption ranked among the top correlates for DBP
reduction, while regular vegetable consumption was
significant for SBP reduction. This dietary-medication
interaction pattern has not been systematically
quantified in previous machine learning studies of
hypertension management. This builds upon previous
research showing associations between diet and
hypertension prevalence (Yang et al., 2022).
Additionally, specific symptom profiles (morning
headaches for DBP, dry mouth for SBP) demonstrated
predictive value, suggesting that patient-reported
symptoms could enhance treatment personalization.

Our subgroup analysis across hypertension-
only, hypertension with cardiovascular disease, and
hypertension with diabetes revealed differential
feature importance patterns, enabling more precise
treatment targeting. These findings support the
clinical utility of interpretable machine learning
models for personalized antihypertensive therapy,

providing actionable insights that traditional

statistical approaches have not captured.

4.4 Limitations and Contributions

Our study's sample size of 160 participants
with 96 predictor features aligns with established
statistical guidelines for developing robust prediction
models with binary outcomes. While our results are
based on a single-centre, cross-sectional dataset
which may limit external validity, this study makes
several important contributions to understanding
behavioural and lifestyle factors in hypertension
management that extend beyond these constraints.
First, this is one of the pioneering studies to use
interpretable machine learning algorithms to predict
blood pressure response based on a comprehensive set
of 96 features, including dictary habits,
socioeconomic factors, and health behaviours in a
complex patient population with comorbidities. To
address potential generalisability concerns, we
deliberately included a heterogeneous patient
population with equal proportions of hypertension-
only, cardiovascular complications, and diabetes
comorbidities, providing insights across diverse
clinical presentations rather than a homogeneous
cohort. While our single-centre design limits
immediate generalizability, several factors support the
broader applicability of our findings. Our study
population represents a diverse socioeconomic
spectrum typical of urban Pakistani healthcare
settings, with patients from varying educational
backgrounds, income levels, and geographical
locations within the region. The inclusion of equal
proportions of patients with hypertension-only,
cardiovascular complications, and diabetes reflects
the complex comorbidity patterns commonly
encountered in clinical practice globally. Second, our
correlation analysis revealed crucial behavioural
insights - regular fish consumption, vegetable intake,
and dietary patterns emerged as significant predictors
alongside traditional clinical measures. The decision
tree visualization provides a transparent framework
for understanding how lifestyle factors interact with
physiological parameters to influence blood pressure
control, offering actionable behavioural modification
strategies for clinicians and patients that can be
adapted across different healthcare settings.

Third, this study demonstrates the feasibility of
capturing complex behavioural patterns even in
resource-limited, single-centre settings. Our high
predictive accuracy (90% for SBP, 97% for DBP)
suggests that behavioural and lifestyle data, when
properly analyzed, can be as valuable as traditional
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clinical parameters in predicting treatment outcomes.
The robust cross-validation procedures employed
help ensure that these results reflect genuine
predictive relationships rather than overfitting to our
specific dataset. Fourth, while cross-sectional, our
study provides immediate insights into which
behavioural modifications might yield the most
significant blood pressure improvements. This can
help prioritize lifestyle interventions and create more
targeted, personalized behavioural counselling
approaches rather than generic lifestyle advice. The
interpretable nature of our tree-based models makes
these insights readily translatable to clinical practice
across different healthcare contexts.

Finally, by incorporating socioeconomic status,
dietary habits, and lifestyle factors into our predictive
models, we address a critical gap in hypertension
research that often focuses solely on clinical
parameters. This holistic approach establishes a
framework for future studies to explore the complex
interplay between behaviour, socioeconomic factors,
and treatment response. To mitigate single-centre
limitations, we recommend future multi-centre
validation studies across diverse populations and
healthcare settings to establish the broader
applicability of our findings, ultimately supporting
more comprehensive and equitable hypertension
management strategies.

4.5 Implications

These findings have significant clinical
implications. The decision tree visualization provides
a practical tool for clinicians to select initial
antihypertensive  therapy based on patient
characteristics, predict which patients are likely to
achieve target BP reductions, identify patients who
may require combination therapy upfront, and
personalize treatment approaches for complex
patients with comorbidities. For instance, our model
suggests that patients not responding to diuretics
alone may benefit from the early addition of ACE
inhibitors or B-blockers.

5. Conclusion

The study demonstrates that tree-based
machine learning algorithms offer valuable tools for
predicting blood pressure response in complex
hypertensive populations. Specifically, Decision Tree
(DT) algorithms achieved 90% accuracy in predicting
systolic blood pressure (SBP) reduction, making them
particularly suitable for SBP management in patients
with hypertension alone or complicated by
cardiovascular  disease and  diabetes. = The

interpretability of DT models provides clinicians with
clear decision pathways, revealing that diuretics, ACE
inhibitors, and B-blockers play pivotal roles in SBP
control.

Random Forest (RF) algorithms showed
superior performance for diastolic blood pressure
(DBP) prediction, with 97% accuracy, suggesting
their utility in fine-tuning DBP management. The
ensemble nature of RF captures complex interactions
between multiple factors, including dietary habits
(fish consumption), symptoms (morning headache,
foot numbness), and medication combinations,
offering a more nuanced approach to DBP control.

These findings have significant clinical
implications. By  leveraging  patient-specific
characteristics, including demographics, lifestyle
factors, comorbidities, and symptom profiles,
clinicians can move beyond one-size-fits-all
approaches to truly personalized hypertension
management. The visualization of decision pathways
enables  evidence-based treatment  selection,
potentially reducing the trial-and-error period often
associated with antihypertensive therapy
optimization.

Furthermore, this research establishes a
framework for integrating machine learning into
routine clinical practice, particularly in resource-
limited settings. The high predictive accuracy
achieved with a relatively modest sample size
suggests that these approaches can be implemented
effectively even in single-center environments. Future
integration of these algorithms into clinical decision
support systems could significantly improve
hypertension  management outcomes, reduce
healthcare costs, and enhance patient quality of life
through more targeted and effective treatment
strategies.
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put Features X

No

Features (X)

Type

Information

Age

Age participants
during study
Categorical

Less than 18 years = 1
18-30=2

31-40=3

41-50=4

51-60 =5

More than 61=6

Age of HTN

Categorical

Less than 18 years = 1
18-30=2

31-40=3

41-50=4

51-60 =5

More than 61=6

Age of CVD

Categorical

Less than 18 years = 1
18-30=2

31-40=3

41-50=4

51-60 =5

More than 61=6

Age of Diabetes

Categorical

Less than 18 years = 1
18-30=2

31-40=3

41-50 =4

51-60 =5

More than 61=6

Height

Numerical

5-6

BMI(kg/m”2)

Categorical

<18.5 (Underweight) = 1
18.5-29.9 (Normal Weight) =2
25-29.9 (Overweight) =3

>30 (Obesity)= 4

BP at that time

Categorical

Normal (130-85) =1

High (140/90-160/100) =2
Extremely hight (above
160/100) =3

Health

Categorical

Poor=1
Fair=2

Good =3
Very good = 4
Excellent=5

Headache

Categorical

Yes=1
No=2
Sometimes = 3

10.

Dizziness

Categorical

Yes=1
No =2

Blurred vision

Categorical

Yes=1
No =2

12.

Nausea

Categorical

Yes=1
No=2
Sometimes = 3

13.

Sleep apnea

Categorical

Yes =1
No=2

Pain/Discomfort (neck,jaw,back)

Categorical

Yes=1
No =2

Feeling weak,lightheaded/faint

Categorical

Yes=1
No=2
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No

Features (X) Type Information

16.

Yes =1

Chest Pain Categorical No=2

17.

Yes=1

Shortness of Breath Categorical No=2

18.

Yes =1

Indigestion Categorical No =2

19.

Yes =1

Palpitations Categorical No=2

20.

Yes=1

Thirst Categorical No =2

21.

Yes =1

Dry mouth Categorical No =2

22.

Yes =1

Appetite Categorical No =2

23.

Yes =

frequent Urination Categorical No=2

24.

Yes =1

Morning Headache Categorical No =2

25.

Yes =1

night sweats Categorical No =2

26.

Yes=1

Light-headedness Categorical No=2

27.

Yes =1

shakiness Categorical No =2

28.

Yes =1

foot numbness Categorical No =2

29.

Yes=1

Tungling Categorical No=2

30.

Yes=1

Foot sores Categorical No =2

31.

Yes=1

leg cramping Categorical No =2

32.

<=1year=1
1-10 years =2
11-20 years =3
>=20 years =4

When were HTN Diagnose Categorical

33.

on visit to doctor = 1
Daily =2

Weekly =3

Monthly = 4

BP Frequency check Categorical

34.

3 months = 1

1 year =2

more than 1 year =3
more than 3 years =4

When Diabetes Diagnose Categorical

35.

<99/normal = 1
Glucose that time Categorical 100-125/prediabetes = 2
>126/higher = diabetes

36.

On visit to doctor = 1
Daily =2

Weekly =3

Monthly = 4

Frequency of checking DM Categorical

37.

Yes=1

Family HTN Categorical No=2

38.

1%-degree relatives=1

HTN family Specify Categorical 2nd relatives = 2
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No

Features (X)

Type

Information

39.

Family CVD

Categorical

Yes=1
No=2

40.

CVD family Specify

Categorical

1¥-degree relatives=1
27 degree relatives=2

41.

Family Diabetes

Categorical

Yes=01
No=02

42.

Specify family DM

Categorical

1%t-degree relatives=1
2nd degree relatives=2

43.

Duration of HTN

Categorical

Less or equal to 1 year = 1
1-10 years =2

11-20 years =3

More than 20 years = 4

44.

Duration of CVD

Categorical

Less or equal to 1 year = 1
1-10 years =2

11-20 years =3

More than 20 years = 4

45.

Duration of Diabetes

Categorical

Less or equal to 1 year = 1
1-10 years =2

11-20 years =3

More than 20 years = 4

46.

ACE inhibitors

Categorical

'Zestril' 'Capoten' ‘renitec'=1
None =2

47.

ARBs

Categorical

'eziday' "Xavor' 'losartan’
‘avsar’=1
None =2

48.

Ca channels block

Categorical

'sofvasc', 'avsar',
'Norvasc','Adalat' = 1
None =2

49.

Diuretics

Categorical

‘Spiromide’ ‘Lasix’
'bepsar"xavor' ‘ditore', ‘carsel' =
1

None =2

50.

B-Blockers

Categorical

'bisoprolol','monitor’, 'carvedilol'
,'carsel', 'concor’, 'merol or
metroprolol', 'atenolol’,
'Mepresor', 'carveda' = 1
None=2

51.

Combination

Categorical

'zestoretic' ,'CO-Eziday' = 1,
None=2

52.

Aspirin/noclot/panadol/Disprin

Categorical

Yes=1
No=2

53.

Warfin

Categorical

Yes=1
No=2

54.

Lowplate

Categorical

Yes=1
No=2

55.

Loprin

Categorical

Yes=1
No=2

56.

Disprin

Categorical

Yes=1
No=2

57.

Angised

Categorical

Yes=1
No=2

58.

Ascard Plus

Categorical

Yes=1
No=2

59.

Cardnit

Categorical

Yes=1
No=2
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Features (X)

Type

Information

60.

Nitromint

Categorical

Yes=1
No=2

61.

Vastrel

Categorical

Yes=1
No=2

62.

Naproxen

Categorical

Yes=1
No=2

63.

Digoxin

Categorical

Yes=1
No=2

64.

Rolip

Categorical

Yes=1
No=2

65.

Niglys

Categorical

Yes=1
No=2

66.

sustac

Categorical

Yes=1
No=2

67.

Nicorandil

Categorical

Yes=1
No=2

68.

Gastric pills

Categorical

Yes=1
No=2

69.

Lipid pills

Categorical

Yes=1
No=2

70.

Marital

Categorical

Single =1

Married =2

Married with cousin = 3
unmarried/divorce = 4

71.

Qualification

Categorical

Illiterate = 1

Primary =2

High school graduate = 3
Bachelor or higher = 4

72.

Job

Categorical

Military/defence = 1
Transportation = 2
Homemaking =3
Agriculture = 4
Retail =5

73.

Income

Categorical

Unemployed = 1
500-10000 =2
11000-20000 =3
21000-30000 = 4
31000-40000 =5
More than 50000 = 6

74.

Members

Categorical

Less than or equal to 5= 1
6-10=2
11-15=3

75.

CAR

Categorical

Yes =01
No =02

76.

House

Categorical

Yes=01
No =02

77.

Physical Activity

Categorical

Yes=1
No=2
sometime = 3

78.

Family Structure

Categorical

Single = 1
Both=2

79.

Home Environment

Categorical

Pleasant =01
Tense =01
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No

Features (X)

Type

Information

80.

Diet plan

Categorical

Yes=1
No=2
sometime = 3

81.

meals/day

Categorical

1 time/day = 1
2 times/day =2
3 times/day =3

82.

salt type

Categorical

Iodized =1
Non- iodized = 2

83.

fat diet

Categorical

Yes=1
No=2

84.

Milk

Categorical

N=1
Occasionally =2
Sometime = 3
Mostly = 4
Daily =5
Unsure = 6

85.

Eggs

Categorical

N=1
Occasionally = 2
Sometime =3
Mostly =4

Daily =5
Unsure= 6

86.

Meat

Categorical

N=1
Occasionally = 2
Sometime = 3
Mostly = 4
Daily =5
Unsure = 6

87.

Chicken

Categorical

N=1
Occasionally = 2
Sometime = 3
Mostly = 4
Daily =5

Unsure = 6

88.

Fish

Categorical

N=1
Occasionally =2
Sometime =3
Mostly = 4
Daily =5
Unsure = 6

89.

Pulses

Categorical

N =1
Occasionally =2
Sometime =3
Mostly = 4
Daily =5
Unsure = 6

90.

Vegetable

Categorical

N =1
Occasionally =2
Sometime = 3
Mostly = 4
Daily =5
Unsure = 6
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Table A1 Cont.

No Features (X) Type Information
N=1
Occasionally = 2
. . Sometime = 3
91. Fruits Categorical Mostly = 4
Daily =5
Unsure = 6
92 Chest pain Categorical Yes =1
) P g No=2
93. SBP when diagnose or before medication Continues (mmHg) 100-234
94. DBP when diagnose or before medication Continues (mmHg) | 70-120
95. SBP after prescribed medication Continues (mmHg) 100-200
96. DBP after prescribed medication Continues (mmHg) | 60-110
Table A2 Output features y1 and y2
Feature Type Information
Decrease of  Systolic blood Nominal Systolic blood pressure decreased after taking

pressure after medication medicines:
1. Yes, decreased
2. No, not decrease

Decrease of Diastolic blood Nominal Diastolic blood pressure decreased after taking
pressure after medication medicines:

1. Yes, decreased

2. No, not decrease

Table A3 Pearson correlation between dependent and independent variable for decrease of diastolic blood pressure

No Feature Correlation Rank
1. DBP after prescribed medication 0.490 1
2. DBP when diagnose or before medication 0.433 2
3. Morning Headache 0.229 3
4. foot numbness 0.228 4
S. shakiness 0.222 5
6. Fish 0.222 6
7. SBP 0.220 7
8. Lightheadedness 0.218 8
9. Sleep apnea 0.210 9
10. Income 0.208 10
11. night sweats 0.206 11
12. Palpitations 0.201 12
13. Foot sores 0.196 13
14. Height 0.192 14
15. leg cramping 0.186 15
16. Pain/Discomfort (neck,jaw,back) 0.186 16
17. Vegetable 0.175 17
18. Age 0.174 18
19. Members 0.165 19

20. Specify family DM 0.161 20

21. fat diet 0.157 21

22. When were HTN Diagnose 0.157 22

23. Frequency of checking DM 0.157 23
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No Feature Correlation Rank
24. frequent Urination 0.156 24
25. Blurred vision 0.153 25
26. When Diabete Diagnose 0.151 26
27. Age of Diabetes 0.148 27
28. BP at that time 0.147 28
29. Family Diabetes 0.145 29
30. Qualification 0.144 30
31. Duration of HTN 0.137 31
32. Home Env 0.133 32
33. Thirst 0.133 33
34. Dry mouth 0.131 34
35. Tungling 0.130 35
36. Warfin 0.128 36
37. CVD family Specify 0.127 37
38. Eggs 0.125 38
39. HTN family Specify 0.121 39
40. meals/day 0.120 40
41. Health 0.118 41
42. Dizziness 0.114 42
43. Family CVD 0.113 43
44. Apetite 0.109 44
45. Fruits 0.108 45
46. Glucose that time 0.105 46
47. Duration of Diabetes 0.100 47
48. Digoxin 0.100 48
49. Indigestion 0.099 49
50. Family HTN 0.097 50
51. Aspirin/noclot/panadol/Disprin 0.097 51
52. Headache 0.091 52
53. SBP Before 0.090 53
54. Diet plan 0.086 54
55. Loprin 0.084 55
56. Nicorandil 0.083 56
57. Disprin 0.082 57
58. Naproxen 0.082 58
59. Niglys 0.082 59
60. salt type 0.081 60
61. House 0.079 61
62. AGE of HTN 0.078 62
63. Vastrel 0.076 63
64. Nitromint 0.076 65
65. Cardnit 0.075 66
66. B-Blockers 0.074 67
67. Angised 0.073 68
68. Ascard Plus 0.072 69
69. Chiken 0.071 70
70. Breath 0.071 71
71. Family Struct 0.068 72
72. Combination 0.065 73
73. Milk 0.061 74
74. Lowplate 0.061 75
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Table A3 Cont.

No Feature Correlation Rank
75. sustac 0.056 76
76. Treatment 0.054 77
77. Chest pain 0.052 78
78. Age of CVD 0.052 79
79. Rolip 0.052 80
80. BP Frequency check 0.051 81
81. Meat 0.050 82
82. Job 0.049 83
83. ARBs 0.048 84
84. Pulses 0.046 85
85. Gastric pills 0.044 86
86. Feeling weak,lightheaded/faint 0.042 87
87. Duration of CVD 0.040 88
88. CAR 0.036 89
89. Diuretics 0.035 90
90. ACE inhib 0.024 92
91. Physical Activity 0.019 93
92. Marital 0.017 94
93. Nausea 0.011 95
94, BMI(kg/m”"2) 0.007 96
95. Lipid pills 0.003 97
96. Ca channels block 0.001 98

Table A4 Pearson correlation between dependent and independent variable for decrease of systolic blood pressure in patients

No Feature Correlation Rank
1. SBP after prescribed medication 0.477 1
2. SBP when diagnose or before medication 0.430 2
3. DBP 0.267 3
4. Dry mouth 0.208 4
S. Tungling 0.180 5
6. Morning Headache 0.177 6
7. Vegetable 0.176 7
8. Members 0.165 8
9. Headache 0.159 9
10. Thirst 0.157 10
11. night sweats 0.155 11
12. shakiness 0.150 12
13. B-Blockers 0.140 14
14. Foot sores 0.139 15
15. Lightheadedness 0.135 16
16. foot numbness 0.132 17
17. frequent Urination 0.132 18
18. Lipid pills 0.128 19
19. leg cramping 0.121 20

20. CAR 0.119 21
21. ARBs 0.118 22
22. Lowplate 0.113 23
23. Aspirin/noclot/panadol/Disprin 0.112 24
24. When Diabete Diagnose 0.112 25
25. Age 0.111 26
26. Sleep apnea 0.104 27
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No Feature Correlation Rank
27. AGE of HTN 0.104 28
28. Ca channels block 0.103 29
29. Home Env 0.100 30
30. Milk 0.099 31
31. Nitromint 0.098 32
32. Duration of Diabetes 0.094 33
33. BMI(kg/m”"2) 0.091 34
34. Diet plan 0.089 35
35. Physical Activity 0.089 36
36. Combination 0.087 37
37. BP at that time 0.085 38
38. Blurred vision 0.083 39
39. Apetite 0.082 40
40. Fish 0.081 41
41. Job 0.079 42
42. Glucose that time 0.078 43
43. Family Struct 0.077 44
44. Age of CVD 0.075 45
45. Cardnit 0.075 46
46. Gastric pills 0.074 47
47. Age of Diabetes 0.074 48
48. Nausea 0.073 49
49. Height 0.072 50
50. Rolip 0.070 51
51. Frequency of checking DM 0.068 52
52. Disprin 0.066 53
53. Naproxen 0.066 54
54. Niglys 0.066 55
55. Dizziness 0.065 56
56. Marital 0.063 57
57. Health 0.063 58
58. Angised 0.060 60
59. ACE inhib 0.059 61
60. DBP Before 0.058 62
61. Palpitations 0.058 63
62. Loprin 0.055 64
63. Digoxin 0.055 65
64. Warfin 0.054 66
65. Nicorandil 0.051 67
66. Vastrel 0.049 68
67. Chiken 0.048 69
68. meals/day 0.046 70
69. Breath 0.046 71
70. Pain/Discomfort (neck,jaw,back) 0.044 72
71. sustac 0.041 73
72. Ascard Plus 0.040 74
73. Meat 0.038 75
74. Qualification 0.036 76
75. Income 0.036 77
76. fat diet 0.034 78
77. Specify family DM 0.029 79
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No Feature Correlation Rank
78. salt type 0.028 80
79. When were HTN Diagnose 0.021 81
80. Eggs 0.020 82
81. Family CVD 0.019 83
82. Feeling weak,lightheaded/faint 0.017 84
83. Fruits 0.016 85
84. Chest Pain 0.015 86
85. HTN family Specify 0.014 87
86. Family HTN 0.014 88
87. Family Diabetes 0.013 89
88. House 0.011 90
89. Duration of HTN 0.011 91
90. BP Frequency check 0.009 92
91. Diuretics 0.007 93
92. Duration of CVD 0.007 94
93. Chest pain 0.006 95
94. Pulses 0.005 96
95. Indigestion 0.003 97
96. CVD family Specify 0.001 98
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