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Abstract 

This study evaluated the performance of 24 models for diabetes prediction by using eight predictors: sex, heart disease, 

hypertension, smoking history, BMI (Body Mass Index), HbA1c level (Hemoglobin A1c), and blood glucose level obtained 

from an open data source, Kaggle. Data preparation involved curating and cleaning to ensure unbiased training and a balanced 

dataset before applying the dataset to machine learning training. The research examined data splitting ratios at 70/30, 80/20, 

and 90/10. The prediction task focused on the diabetes category: 0 (non-diabetes) and 1 (diabetes). The performance parameters 

indicated that the Ensemble Boosted Trees model, particularly with a 70/30 data splitting ratio, achieved the highest accuracy 

of 91.45%, precision of 91.29%, recall of 91.65%, and F1-score of 91.37%. Feature selection, including Chi-Square (2) 

ANOVA, Kruskal-Wallis, and principal component analysis have been applied to reduce the complexity and dimensionality 

of the model, and it was found that the following parameters were significant for diabetes diagnosis: (1) HbA1c, (2) blood 

glucose, (3) BMI, and (4) age. The first two parameters are crucial for medical practitioners to determine whether a patient has 

diabetes; however, they are invasive and can only be collected from blood test results. Here, we also discuss the accuracy of 

the machine learning model in predicting diabetes without invasive predictors, namely, blood glucose and HbA1c. Our 

simplified model using age and BMI still yielded a reasonable accuracy of 74.65%, demonstrating the feasibility of non-blood 

test and non-invasive screening, especially in resource-limited settings, where age and BMI are key non-blood test predictors. 

 

Keywords: artificial intelligence; diabetes; feature selection method; dimension reduction method; machine learning; non-

blood test diabetes prediction 

 

 

1.  Introduction 

Diabetes mellitus is a chronic metabolic disorder 

characterized by impaired glucose regulation resulting 

from insufficient insulin production or ineffective 

insulin utilization (Alam et al., 2021; Sarkar et al., 

2019). This results in glucose accumulation in the 

bloodstream, causing a metabolic imbalance that, if 

unsolved, can result in several health complications, 

including cardiovascular disease, neuropathy, vision 

problems, and, ultimately, organ damage (Calibo, 

2024; Prabhakar et al., 2024). 

Diabetes presents a significant global health 

challenge, affecting an estimated 10.5% of the world's 

population, with an estimated 536.6 and 783.2 million 

adults living with the condition (Boadu et al., 2024). 

Several forms of diabetes exist, each with distinct 

challenges and implications for glucose metabolism, 

including Type 1, Type 2, gestational diabetes, 

secondary diabetes, maturity-onset diabetes of the 

young, and latent autoimmune diabetes in adults (Skyler 

et al., 2017; Buzzetti et al., 2017). Clinical manifestations 

often develop insidiously and include polydipsia, 

polyuria, unexplained weight loss, fatigue, and visual 

disturbances (Jalilian et al., 2023; Looareesuwan et 

al., 2023). 
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Early diagnosis of diabetes is crucial, as 

patients often remain asymptomatic in the beginning 

stages (Carmichael et al., 2021; Pippitt et al., 2016). 

According to clinical practice guidelines, screening is 

advised based on risk, at any age for overweight or 

obese individuals, and beginning at 35 for individuals 

not in those categories. (Tiwari & Aw, 2024; Davidson 

et al., 2024). Traditional diagnostic methods, including 

fasting plasma glucose and HbA1c testing, have 

inherent limitations such as cost, invasiveness, and 

accessibility barriers, frequently resulting in delayed 

detection until complications emerge (Bergman et al., 

2020; Zhang et al., 2023). 

Artificial intelligence (AI), especially machine 

learning, offers a paradigm shift in diabetes diagnosis 

by analyzing complex datasets, including patient 

records and blood glucose measurements, to identify 

subtle patterns representative of early-stage diabetes 

more efficiently and accurately than old-fashioned 

approaches (Dagliati et al., 2018; Poorani et al., 2025 

; Anupongongarch et al., 2022). However, challenges 

remain, such as selecting relevant features and 

translating predictions into clinical action. This study 

addresses these challenges by systematically evaluating 

multiple machine learning models and feature selection 

strategies to develop an accurate, non-invasive 

approach for early diabetes screening. 

Ghosh et al. (2021) examine four machine 

learning-based classifiers, achieving an accuracy of 

99.35% for the Random Forest classifier, which 

included interventional methods such as the insulin 

test and glucose level parameters. Similarly, Dritsas 

& Trigka (2022) developed multiple models and 

evaluated their performance using 10-fold cross-

validation with the Synthetic Minority Over-sampling 

Technique (SMOTE) and data splitting. Their best-

performing model, which excluded invasive features, 

achieved a top accuracy of 99.22%. Qin et al. (2022) 

demonstrated the effectiveness of CATBoost, XGBoost, 

Logistic Regression, Random Forest, and Support 

Vector Machine classifiers, achieving 82.1% accuracy 

and an Area Under the Receiver Operating Characteristic 

Curve (AUC) of 0.83. These classifiers were developed 

using parameters that included blood test results and 

primarily focused on lifestyle-type parameters. While 

most existing studies rely heavily on blood test 

parameters (Chapakiya et al., 2025; Khanam & Foo, 

2021; Rani, 2020), there is limited research on accurate 

diabetes risk prediction using only non-invasive, 

readily available measurements. Such an approach 

could enhance accessibility, reduce costs, and enable 

preliminary screening in resource-constrained settings 

without requiring invasive blood tests. Previous 

research and statistical evaluations have consistently 

highlighted four key predictors as most influential in 

diabetes diagnosis: Glycated Hemoglobin (HbA1c), 

blood glucose level, Body Mass Index (BMI), and 

age. Notably, while HbA1c and blood glucose are 

derived from invasive blood tests, BMI and age are 

non-invasive and readily accessible (Liu et al., 2025; 

Sinsophonphap & Thavornsawadi, 2022). This distinction 

underpins the potential for developing simplified, 

accessible screening tools using non-blood-based 

indicators.  
In this study, we utilize the open-source dataset 

from Mohammed Mustafa on Kaggle (Mustafa, 2023), 

which contains 100,000 patient records with eight 

clinical predictors. Our method customizes refining 

diagnostic indicators to improve accuracy and 

interpretability by reducing blood test predictors to 

develop a non-invasive diabetes diagnosis approach 

and compare the performance of the two approaches. 

We evaluated 24 machine learning algorithms to 

identify optimal predictive models and determine the 

most influential features for diabetes screening. 

Feature selection methods are essential for reducing 

model complexity, enhancing predictor performance, 

and expanding previous research (Pechprasarn et al., 

2025) on ML algorithm parameters for diabetes 

prediction. 

 

2.  Objectives 

1. To improve diabetes prediction and diagnosis 

by developing and evaluating machine learning 

models that accurately classify diabetic and non-

diabetic individuals.  

2. To analyze the impact of different training to 

test data ratios on model performance.  

3. To develop a self-assessment method for 

early diabetes detection through non-invasive predictors 

that do not require blood tests, which can improve 

accessibility while reducing computational complexity. 

 

3.  Materials and Methods 

We collected and curated the data for this 

research to ensure that the diabetes and non-diabetes 

datasets had equal samples. The data rows were 

separated into training and test datasets at 70/30, 

80/20, and 90/10 ratios. All 24 models used to train 

the data are available in MATLAB R2024a and are 

included here. The flow of this research is depicted in 

Figure 1.
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Figure 1 Research process flow for data preparation and machine learning model evaluation. Modified from “Predicting 

Parkinson’s Disease Severity Using Telemonitoring Data and Machine Learning Models: A Principal Component Analysis-

Based Approach for Remote Healthcare Services During the COVID-19 Pandemic” (Pechprasarn et al., 2023) 
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Table 1 Description of clinical predictors, data types, and value ranges 

Variable 
Predictor/Label in 

Machine Learning 
Category Values/Value Range 

Diabetes Label Nominal 0 = Non-diabetes 

1 = Diabetes 

Heart Disease Predictor Nominal 0 = Non-Heart Disease 

1 = Heart disease 

Hypertension Predictor Nominal 0 = There is no continuous increase in blood pressure 

levels. 

1 = There is a continuous increase in blood pressure 

levels. 

Smoking History Predictor Nominal No Info = No record of smoking history. 

Never = Has not smoked regularly 

Former = Previously smoked but no longer does. 

Current = Actively smoking. 

Ever = often, smoking at least once per day. 

BMI 

(Body Mass Index) 

Predictor Numerical In the kg/m2 unit 

HbA1c level 

(Hemoglobin A1c) 

Predictor Numerical In mg% unit 

Blood Glucose level Predictor Numerical In the mg/dL unit 

Sex Predictor Nominal Male and Female 

Age Predictor Nominal Patients' age in year 

 

3.1 Dataset Details 

The dataset for estimating diabetes in this paper 

was obtained from Mohammed Mustafa’s data on the 

Kaggle website (Mustafa, 2023); the data file is in 

Excel format with a .csv extension. This dataset has 

100,000 patient data points and eight columns of 

predictors for training supervised ML models. Variables 

used are sex, age, hypertension, heart disease, 

smoking history, BMI, Glycated hemoglobin level 

(HbA1c), and blood glucose level, as shown in Table 1. 

 

3.2 Data Curation 

The data was processed by curating and 

cleaning the diabetic dataset to ensure unbiased 

training. The dataset that was obtained has a 

significant imbalance. The diabetes dataset contains 

8,500 patients, while the non-diabetes dataset has 

91,500 patients. Imbalanced data can impact the 

machine learning model, causing it to predict “non-

diabetes” more frequently than “diabetes”, resulting 

in unfair predictions. To prevent prediction errors 

caused by this imbalance, the dataset should be 

adjusted to achieve a balanced distribution. This 

balanced dataset was created by randomly eliminating 

83,000 non-diabetes entries, both classes have 8,500 

cases each from this method. 

 

3.3 Dataset for Training and Testing 

This dataset should be divided into two files for 

data curation: model training and testing. The ratio of 

training and testing datasets is determined by 

comparing the ratios of 70/30, 80/20, and 90/10 for 

training and testing, as shown in Table 2. 

 
Table 2 Training and Testing Dataset Splits by Ratio 

Ratio Train Test Total 

70/30 11,900 5,100 17,000 

80/20 13,600 3,400 17,000 

90/10 15,300 1,700 17,000 

 

3.4 Machine Learning Training and Testing 

After splitting the data at different ratios, we 

compared the accuracy of each ratio. We trained and 

tested these datasets using 24 models in MATLAB 

R2024a, as listed in Table 3. For the test dataset, we 

used the same performance matrix as the training 

dataset for easy comparison, including a K-fold cross-

validation (K-fold=5) to calculate performance 

metrics, including precision, recall, accuracy, and F1-

score, using the training dataset as demonstrated in 

equations (1) - (4) as follows: 
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Accuracy = TP + TN

TP + TN + FP + FN
  (1) 

 

Precision = TP

TP + FP
  (2) 

 

Recall = TP

 TP + FN
          (3) 

 

F1-score =  2 x Precision x Recall

 Precision + Recall
   (4) 

 

From this equation, True Positive (TP) refers to 

the correct prediction of patients with diabetes, True 

Negative (TN) refers to the correct prediction of 

patients with non-diabetes, and A False Positive (FP) 

occurs when non-diabetes is misclassified as diabetes, 

and a False Negative (FN) occurs when diabetes is 

misclassified as non-diabetes. The results obtained 

from the calculations will indicate the effectiveness of 

the model used for training and testing, ensuring that 

our model can be improved and developed to enhance 

diabetes diagnosis in medical practice. 

 

3.5 Feature Selection and Simplified Model 

Feature selection algorithms, including Chi-

Square (2) ANOVA and the Kruskal-Wallis algorithms 

identify the crucial factors that reduce the number of 

predictors used to train machine learning models. This 

process involves adding predictors one by one and 

comparing the accuracy results to determine how 

many predictors are necessary for this machine 

learning model, as well as identifying those that are 

less important, thereby reducing the processing 

complexity. These have been widely used for 

dimensionality reduction. In this research, the 

dimension reduction method was applied using 

MATLAB to identify the importance and relevance of 

each predictor (blood glucose levels, HbA1c, heart 

disease, hypertension, smoking history, BMI, sex) to 

find the most important predictors, excluding blood 

test predictors (HbA1c, blood glucose levels), for 

developing a non-invasive diabetes diagnosis 

approach Less important predictors were removed, 

and the remaining ones were analyzed to assess 

whether simple, non-blood-based indicators could be 

used effectively for early diabetes screening 

(Pechprasarn et al., 2023). 

 

4.  Results 

This paper explores how AI and machine 

learning methods can be improved to achieve the best 

performance in predicting diabetes. This project will 

compare the accuracy of different ML models and 

ratios of training and testing datasets to determine the 

most effective approach. 
 

4.1 Training of Classification Models 

During the model training phase, this study 

utilized dataset splits of 70/30, 80/20, and 90/10 for 

training and testing. All machine learning models 

were trained using the training dataset, and their 

performance was compared and validated based on 

key evaluation metrics: precision, recall, F1-score, and 

accuracy using 5-fold cross-validation, as presented in 

Table 4.

 
Table 3 24 Models available in MATLAB R2024a 

Model Details Model Details 

Tree 

Fine Tree 

SVM 

Linear SVM 

Medium Tree Quadratic SVM 

Coarse Tree Cubic SVM 

Ensemble 

Boosted Trees Fine Gaussian SVM 

Bagged Trees Medium Gaussian SVM 

RUS Boosted Tree Coarse Gaussian SVM 

Kernel 
SVM Kernel 

Neural Network 

Narrow Neural Network 

Logistic Regression Kernel Medium Neural Network 

Naïve Bayes 
Gaussian Naïve Bayes Wide Neural Network 

Kernel Naïve Bayes Bilayer Neural Network 

Binary GLM Logistic 

Regression 

Binary GLM Logistic 

Regression 
Tri-layered Neural Network 

Efficient Logistic 

Regression 

Efficient Logistic 

Regression 
Efficient Linear SVM Efficient Linear SVM 
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Table 4 Cross-validation results of 24 models across different data split ratios 

Model performance computed using 5-fold cross-validation with a dataset split ratio of 70/30 

Model Details Accuracy  Precision Recall F1-score 

Tree 

Fine Tree 89.72% 89.19% 90.40% 89.46% 

Medium Tree 90.10% 89.49% 90.87% 89.79% 

Coarse Tree 85.05% 79.49% 94.47% 82.18% 

Binary GLM Logistic Regression Binary GLM Logistic Regression 88.24% 88.36% 88.07% 88.30% 

Efficient Logistic Regression Efficient Logistic Regression 88.39% 88.52% 88.22% 88.45% 

Efficient Linear SVM Efficient Linear SVM 87.74% 88.47% 86.79% 88.10% 

Naïve Bayes 
Gaussian Naïve Bayes 83.99% 88.43% 78.22% 86.15% 

Kernel Naïve Bayes 90.36% 90.46% 90.24% 90.41% 

SVM 

Linear SVM 88.46% 88.34% 88.62% 88.40% 

Quadratic SVM 88.61% 88.46% 88.79% 88.53% 

Cubic SVM 89.95% 89.19% 90.92% 89.57% 

Fine Gaussian SVM 87.85% 85.67% 90.91% 86.74% 

Medium Gaussian SVM 89.47% 88.71% 90.45% 89.09% 

Coarse Gaussian SVM 88.61% 88.43% 88.86% 88.52% 

Ensemble 

Boosted Trees* 91.20% 90.49% 92.08% 90.84% 

Bagged Trees 89.99% 89.73% 90.32% 89.86% 

RUS Boosted Tree 90.10% 89.49% 90.87% 89.79% 

Neural Network 

Narrow Neural Network 90.48% 90.12% 90.92% 90.30% 

Medium Neural Network 89.81% 89.51% 90.18% 89.66% 

Wide Neural Network 87.82% 88.12% 87.43% 87.97% 

Bilayer Neural Network 90.08% 89.28% 91.09% 89.67% 

Tri-layered Neural Network 89.94% 89.13% 90.97% 89.53% 

Kernel 
SVM Kernel 88.82% 87.83% 90.13% 88.32% 

Logistic Regression Kernel 87.98% 86.94% 89.39% 87.46% 

Model performance computed using 5-fold cross-validation with a dataset split ratio of 80/20 

Model Details Accuracy  Precision Recall F1-score 

Tree 

Fine Tree 89.98% 89.96% 90.00% 89.97% 

Medium Tree 90.62% 90.25% 91.07% 90.43% 

Coarse Tree 86.21% 81.87% 93.00% 83.98% 

Binary GLM Logistic Regression Binary GLM Logistic Regression 88.51% 88.49% 88.54% 88.50% 

Efficient Logistic Regression Efficient Logistic Regression 88.48% 88.60% 88.32% 88.54% 

Efficient Linear SVM Efficient Linear SVM 88.64% 88.54% 88.76% 88.59% 

Naïve Bayes 
Gaussian Naïve Bayes 84.19% 88.70% 78.37% 86.39% 

Kernel Naïve Bayes 90.42% 90.45% 90.38% 90.43% 

SVM 

Linear SVM 88.67% 88.38% 89.04% 88.52% 

Quadratic SVM 88.82% 88.21% 89.63% 88.51% 

Cubic SVM 90.44% 89.64% 91.46% 90.04% 

Fine Gaussian SVM 88.61% 86.48% 91.53% 87.53% 

Medium Gaussian SVM 89.74% 88.94% 90.75% 89.34% 

Coarse Gaussian SVM 88.74% 88.36% 89.24% 88.55% 

Ensemble 

Boosted Trees 91.76% 91.21% 92.44% 91.49% 

Bagged Trees 90.50% 90.30% 90.75% 90.40% 

RUS Boosted Tree 90.60% 90.21% 91.07% 90.40% 

Neural Network 

Narrow Neural Network 90.80% 90.52% 91.15% 90.66% 

Medium Neural Network 90.33% 90.35% 90.31% 90.34% 

Wide Neural Network 88.62% 88.57% 88.68% 88.59% 

Bilayer Neural Network 90.68% 90.13% 91.35% 90.40% 

Tri-layered Neural Network 90.35% 90.07% 90.71% 90.21% 

Kernel 
SVM Kernel 88.99% 87.92% 90.41% 88.45% 

Logistic Regression Kernel 88.03% 86.85% 89.63% 87.43% 
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Table 4 Cont. 

Model performance computed using 5-fold cross-validation with a dataset split ratio of 90/10 

Model Details Accuracy  Precision Recall F1-score 

Tree 

Fine Tree 90.25% 89.46% 91.27% 89.85% 

Medium Tree 90.46% 89.86% 91.20% 90.16% 

Coarse Tree 84.53% 78.11% 95.95% 81.19% 

Binary GLM Logistic Regression Binary GLM Logistic Regression 88.39% 88.46% 88.29% 88.42% 

Efficient Logistic Regression Efficient Logistic Regression 81.19% 88.55% 88.29% 84.71% 

Efficient Linear SVM Efficient Linear SVM 81.12% 88.50% 88.21% 84.65% 

Naïve Bayes 
Gaussian Naïve Bayes 83.87% 88.57% 78.09% 86.16% 

Kernel Naïve Bayes 90.34% 90.39% 90.27% 90.37% 

SVM 

Linear SVM 88.51% 88.42% 88.63% 88.46% 

Quadratic SVM 88.88% 88.48% 89.39% 88.68% 

Cubic SVM 90.39% 89.95% 90.93% 90.17% 

Fine Gaussian SVM 88.44% 86.71% 90.78% 87.57% 

Medium Gaussian SVM 89.65% 89.09% 90.37% 89.37% 

Coarse Gaussian SVM 88.63% 88.45% 88.86% 88.54% 

Ensemble 

Boosted Trees 91.33% 90.36% 92.54% 90.85% 

Bagged Trees 90.16% 89.94% 90.44% 90.05% 

RUS Boosted Tree 90.46% 89.88% 91.20% 90.17% 

Neural Network 

Narrow Neural Network 90.66% 90.40% 90.98% 90.53% 

Medium Neural Network 90.14% 90.12% 90.16% 90.13% 

Wide Neural Network 88.59% 88.87% 88.22% 88.73% 

Bilayer Neural Network 90.41% 89.91% 91.05% 90.16% 

Tri-layered Neural Network 90.52% 90.05% 91.10% 90.28% 

Kernel 
SVM Kernel 88.90% 88.04% 90.03% 88.46% 

Logistic Regression Kernel 88.69% 87.88% 89.75% 88.28% 

 

             (a)             (b)              (c) 

Figure 2 Confusion matrices of the trained Ensemble Boosted Trees model at different train-test split ratios:  

(a) 70/30, (b) 80/20, (c) 90/10 

 

Among the 24 trained models, the Ensemble 

Boosted Trees model for diabetes prediction and 

diagnosis produced the best results. The three train-

test split ratios were evaluated: 70/30, 80/20, and 

90/10. With a 70/30 split, the Ensemble Boosted Trees 

model achieved an accuracy of 91.20%, a precision of 

90.49%, a recall of 92.08%, and an F1-score of 

90.84%. With an 80/20 split, the model achieved an 

accuracy of 91.76%, a precision of 91.21%, a recall of 

92.44%, and an F1-score of 91.49%. For the 90/10 

split, the model achieved an accuracy of 91.33%, a 

precision of 90.36%, a recall of 92.54%, and an F1-

score of 90.85%. The confusion matrices of the three 

splitting ratios are shown in Figure 2. 

 

4.2 Performance Evaluation Using the Test Dataset 

After training the models, the trained models 

were tested using a separate unseen dataset reserved 

for evaluation. The testing dataset was separated using 

the same procedure as the training dataset. Model 

performance for the test dataset was assessed using 

the same performance metrics for a direct comparison 

to the validation performance. The detailed results for 

each split ratio are presented in Table 5. 
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Table 5 Test dataset performance of 24 models across different data split ratios 

Model performance was evaluated using the unseen test dataset with a dataset split ratio of 70/30 

Model Details Accuracy  Precision Recall F1-score 

Tree 

Fine Tree 90.18% 89.24% 91.37% 89.70% 

Medium Tree 90.43% 90.53% 90.31% 90.48% 

Coarse Tree 85.31% 79.55% 95.06% 82.33% 

Binary GLM Logistic Regression Binary GLM Logistic Regression 88.35% 88.60% 88.04% 88.47% 

Efficient Logistic Regression Efficient Logistic Regression 88.51% 88.84% 88.08% 88.68% 

Efficient Linear SVM Efficient Linear SVM 88.57% 88.64% 88.47% 88.61% 

Naïve Bayes 
Gaussian Naïve Bayes 84.02% 88.68% 78.00% 86.28% 

Kernel Naïve Bayes 90.20% 90.13% 90.27% 90.16% 

SVM 

Linear SVM 88.47% 88.41% 88.55% 88.44% 

Quadratic SVM 88.69% 88.61% 88.78% 88.65% 

Cubic SVM 90.37% 89.40% 91.61% 89.88% 

Fine Gaussian SVM 88.49% 86.66% 90.98% 87.57% 

Medium Gaussian SVM 89.61% 89.09% 90.27% 89.35% 

Coarse Gaussian SVM 88.59% 88.56% 88.63% 88.57% 

Ensemble 

Boosted Trees 91.45% 91.29% 91.65% 91.37% 

Bagged Trees 90.59% 90.68% 90.47% 90.64% 

RUS Boosted Tree 90.43% 90.53% 90.31% 90.48% 

Neural Network 

Narrow Neural Network 90.55% 89.98% 91.25% 90.27% 

Medium Neural Network 90.39% 89.68% 91.29% 90.03% 

Wide Neural Network 89.55% 89.97% 89.02% 89.76% 

Bilayer Neural Network 90.37% 88.86% 92.31% 89.61% 

Tri-layered Neural Network 90.61% 90.09% 91.25% 90.35% 

Kernel 
SVM Kernel 88.94% 88.10% 90.04% 88.52% 

Logistic Regression Kernel 88.59% 87.90% 89.49% 88.25% 

Model performance evaluated using the unseen test dataset with a dataset split ratio of 80/20 

Model Details Accuracy  Precision Recall F1-score 

Tree 

Fine Tree 88.71% 88.52% 88.94% 88.62% 

Medium Tree 88.56% 89.13% 87.82% 88.85% 

Coarse Tree 83.76% 78.05% 93.94% 80.81% 

Binary GLM Logistic Regression Binary GLM Logistic Regression 87.76% 87.81% 87.71% 87.79% 

Efficient Logistic Regression Efficient Logistic Regression 88.00% 88.00% 88.00% 88.00% 

Efficient Linear SVM Efficient Linear SVM 87.97% 88.31% 87.53% 88.14% 

Naïve Bayes 
Gaussian Naïve Bayes 83.35% 87.35% 78.00% 85.31% 

Kernel Naïve Bayes 89.44% 89.10% 89.88% 89.27% 

SVM 

Linear SVM 87.91% 87.76% 88.12% 87.83% 

Quadratic SVM 88.18% 87.82% 88.65% 88.00% 

Cubic SVM 89.09% 88.34% 90.06% 88.71% 

Fine Gaussian SVM 87.53% 85.29% 90.71% 86.39% 

Medium Gaussian SVM 88.88% 88.30% 89.65% 88.59% 

Coarse Gaussian SVM 87.79% 87.55% 88.12% 87.67% 

Ensemble 

Boosted Trees 89.94% 89.66% 90.29% 89.80% 

Bagged Trees 89.50% 89.29% 89.76% 89.40% 

RUS Boosted Tree 88.56% 89.13% 87.82% 88.85% 

Neural Network 

Narrow Neural Network 89.74% 89.30% 90.29% 89.52% 

Medium Neural Network 89.32% 89.12% 89.59% 89.22% 

Wide Neural Network 88.35% 88.95% 87.59% 88.65% 

Bilayer Neural Network 89.29% 89.34% 89.24% 89.32% 

Tri-layered Neural Network 89.53% 88.75% 90.53% 89.14% 

Kernel 
SVM Kernel 87.56% 86.26% 89.35% 86.90% 

Logistic Regression Kernel 86.71% 85.58% 88.29% 86.14% 
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Table 5 Cont. 

Model performance evaluated using the unseen test dataset with a dataset split ratio of 90/10 

Model Details Accuracy Precision Recall F1-score 

Tree 

Fine Tree 90.60% 89.82% 90.35% 89.94% 

Medium Tree 89.47% 89.24% 89.76% 89.36% 

Coarse Tree 83.71% 77.31% 95.41% 80.38% 

Binary GLM Logistic Regression Binary GLM Logistic Regression 87.76% 88.03% 87.41% 87.90% 

Efficient Logistic Regression Efficient Logistic Regression 87.88% 88.33% 87.29% 88.11% 

Efficient Linear SVM Efficient Linear SVM 87.00% 88.40% 85.18% 87.69% 

Naïve Bayes 
Gaussian Naïve Bayes 82.88% 88.03% 76.12% 85.38% 

Kernel Naïve Bayes 89.59% 89.73% 89.41% 89.66% 

SVM 

Linear SVM 87.65% 87.91% 87.29% 87.78% 

Quadratic SVM 87.94% 87.99% 87.88% 87.96% 

Cubic SVM 90.39% 89.95% 90.93% 90.17% 

Fine Gaussian SVM 87.88% 86.51% 89.76% 87.19% 

Medium Gaussian SVM 89.00% 89.05% 88.94% 89.02% 

Coarse Gaussian SVM 87.88% 88.06% 87.65% 87.97% 

Ensemble 

Boosted Trees 90.88% 90.74% 91.06% 90.81% 

Bagged Trees 89.88% 89.60% 90.24% 89.74% 

RUS Boosted Tree 89.47% 89.24% 89.76% 89.36% 

Neural Network 

Narrow Neural Network 90.18% 90.41% 89.88% 90.30% 

Medium Neural Network 90.41% 90.84% 89.88% 90.63% 

Wide Neural Network 88.94% 89.50% 88.24% 89.22% 

Bilayer Neural Network 90.41% 90.46% 90.35% 90.44% 

Tri-layered Neural Network 89.94% 90.18% 89.65% 90.06% 

Kernel 
SVM Kernel 87.06% 86.63% 87.65% 86.84% 

Logistic Regression Kernel 87.24% 86.51% 88.24% 86.87% 

 

 
          (a) 

 
         (b) 

 
          (c) 

Figure 3 Confusion matrices of the Ensemble Boosted Trees model on the test dataset for three split ratios:  

(a) 70/30, (b) 80/20, (c) 90/10 

 

For the 24 trained models evaluated on the test 

dataset, the Ensemble Boosted Trees model for 

diabetes prediction and diagnosis produced the best 

results. Three train-test split ratios were evaluated: 

70/30, 80/20, and 90/10. With a 70/30 split, the 

Ensemble Boosted Trees model achieved an accuracy 

of 91.45%, a precision of 91.29%, a recall of 91.65%, 

and an F1-score of 91.37%. With an 80/20 split, the 

model achieved an accuracy of 89.94%, a precision of 

89.66%, a recall of 90.29%, and an F1-score of 

89.80%. For the 90/10 split, the model achieved an 

accuracy of 90.88%, a precision of 90.74%, a recall of 

91.06%, and an F1-score of 90.81%. Therefore, it can 

be concluded that the dataset size was sufficiently 

large for all the ratios, and there was no significant 

difference among the three cases. The performance  

of the 5-fold cross-validation in Table 4 and the test 

performance in Table 5 were well within 1.8% for  

the ensemble-boosted tree models, indicating an 

optimal fit for the models. The confusion matrices of 

the three splitting ratios for the test cases are shown in 

Figure 3.
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4.3 Feature Selection and Dimension Reduction 

Here, three statistical algorithms, including 

Chi-Square (2) ANOVA and the Kruskal-Wallis 

algorithms were employed to rank the importance of 

each feature for the eight predictors (including HbA1c 

level and blood glucose level). The statistical values 

of the three ranking algorithms are shown in Figure 4. 

We found that four predictors, including HbA1c, 

blood glucose levels, age, and BMI, have a statistical 

value of infinity across all three algorithms. Even 

though BMI does not have an infinite value in the 

Kruskal-Wallis algorithm, the value is still considered 

high. 

HbA1c and blood glucose levels are obtained 

from blood tests to measure blood sugar levels, two of 

the four most essential predictors in determining 

diabetes in medical practice. In other words, if blood 

test results are available, these values can indicate 

whether a person has diabetes. The Ensemble Boosted 

Trees model was trained by adding one predictor at a 

time, as shown in Table 6. The model trained using 

three predictors achieved an accuracy of 87.96%, 

which was 5% higher than the model trained using 

two blood-related parameters, indicating that the BMI 

factor plays a crucial role in diabetes prediction. 

Adding the age parameter improved the accuracy 

performance further by around 2%, achieving 90.79% 

accuracy. The rest of the parameters, after four 

predictors, did not show significant improvement. 

Based on these findings, this research concludes that 

only four predictors are necessary for diabetes 

prediction, effectively reducing the computational 

complexity of machine learning models. The key 

predictors identified are HbA1c, blood glucose, age, 

and BMI, which are sufficient for accurate diabetes 

prediction.

 

(a) 

 
(b) 

 
(c) 

 
Figure 4 Statistical importance of each predictor using (a) Chi-Square (χ²), (b) ANOVA, and (c) Kruskal-Wallis algorithms 
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Table 6 Accuracy of Ensemble Boosted Trees model using different combinations of predictors 

Number of 

predictors 
Predictors 

Accuracy 

of validation 

Accuracy 

of the test 

dataset 

1 blood glucose 69.41% 69.27% 

1 HbA1c 72.13% 73.27% 

1 BMI 65.61% 64.76% 

1 Age 42.41% 42.51% 

2 HbA1c, blood glucose 82.98% 82.41% 

3 HbA1c, blood glucose, BMI 87.96% 88.10% 

4 HbA1c, blood glucose, BMI, age 90.79% 90.86% 

5 HbA1c, blood glucose, BMI, age, hypertension 91.16% 90.96% 

6 HbA1c, blood glucose, BMI, age, hypertension, heart disease 91.06% 91.08% 

7 HbA1c, blood glucose, BMI, age, hypertension, heart disease, smoking history 91.14% 91.25% 

8 HbA1c, blood glucose, BMI, age, hypertension, heart disease, smoking history, sex 91.49% 91.20% 

 

Table 7 Accuracy of Ensemble Boosted Trees model using only non-blood-based predictors 

Number of 

predictors 
Predictors 

Accuracy 

of validation 

Accuracy 

of the test dataset 

1 BMI 65.61% 64.76% 

1 Age 42.41% 42.51% 

1 hypertension 59.63% 59.10% 

1 heart disease 56.02% 55.67% 

1 smoking history 60.37% 59.33% 

1 Sex 52.85% 54.12% 

2 BMI, age 74.65% 73.80% 

3 BMI, age, and hypertension 75.08% 74.55% 

4 BMI, age, hypertension, heart disease 75.30% 74.80% 

5 BMI, age, hypertension, heart disease, smoking history 75.73% 74.69% 

6 BMI, age, hypertension, heart disease, smoking history, sex 75.92% 75.06% 

 

Table 7 shows the accuracy of the models 

trained using non-blood parameters, in turn, by adding 

one clinical feature. The model trained using only two 

parameters, BMI and age, can achieve an accuracy of 

74.65%. Adding one extra feature, hypertension, 

improves the model by less than 1%. 

In contrast, the other two critical predictors are 

not derived from blood test results but rather from the 

patient's environmental factors. Therefore, the 

researcher aims to determine whether it is possible to 

predict diabetes using only these two environmental 

predictors without relying on blood test results. 

From the results shown in Figure 5, the best-

performing model with blood test results was the 

Ensemble: Boosted Trees model, achieving a test 

accuracy of 91.45% using eight features. In contrast, 

the best model without blood test results achieved a 

test accuracy of 74.65% and 73.80% for the validation 

and test cases, respectively. The significant difference 

in accuracy highlights the importance of blood test 

results as key predictors. Nevertheless, the model 

without blood test results still achieved reasonable 

accuracy, suggesting its potential for providing a rough 

estimate of diabetes risk. 

 

5.  Discussion 

The results demonstrate that the Ensemble 

Boosted Trees model achieved the best performance 

among all machine learning models when applied to 

the original dataset containing eight predictors. 

However, this study critically examined models using 

fewer predictors that demonstrate high potential for 

diabetes classification without requiring blood test 

results. These two predictors exhibited importance 

value of infinity (∞), similar to blood glucose levels 

and HbA1c, as demonstrated by Chi-Square (χ2), 

ANOVA, and the Kruskal-Wallis algorithm. Subsequently, 

a model using only these two predictors (age and 

BMI) eliminated the need for blood test results 

(HbA1c and blood glucose levels). The Ensemble 

Boosted Trees model outperformed all other models 

in predicting diabetes without blood test data. All 

train-test splitting ratios yielded consistent model 

performance, indicating that the dataset contained 
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sufficient samples for reliable evaluation. This ensures 

that the model is generalized well to unseen data while 

maintaining stability in its predictions. 

This study highlights and demonstrates the 

feasibility of non-blood test-based screening, 

providing a direct comparison to blood test screening 

using the same dataset. This approach ensures a fair 

comparison through 24 machine learning models. 

This study underscores the critical role of blood test 

results in diabetes prediction, as HbA1c and blood 

glucose levels achieved a significantly higher accuracy 

of 91.45%. A non-invasive approach using only age 

and BMI yielded a reasonable accuracy of 74.65%, 

making it a valuable tool for preliminary screening. 

Feature selection proves that increasing the number of 

predictors by more than four does not significantly 

enhance model accuracy. However, this research 

spots age and BMI as the most powerful non-blood 

predictors. These findings support the feasibility of 

implementing a simplified, cost-effective model for 

diabetes risk assessment, particularly in resource-

limited settings. 

While the non-invasive model demonstrates 

promise, several limitations warrant consideration. 

The reduced accuracy compared to blood test-based 

models (74.65% vs. 91.45%) suggests that non-invasive 

screening should complement rather than replace 

traditional diagnostic methods. Future research should 

investigate the integration of additional non-invasive 

biomarkers and validate these findings across diverse 

populations to enhance the model's generalizability 

and clinical utility. 

 

6.  Conclusion 

This study evaluated 24 machine learning 

models for diabetes prediction, comparing blood test-

based and non-invasive approaches. The Ensemble 

Boosted Trees model achieved 91.45% accuracy with 

eight predictors including blood markers, while a 

simplified model using only age and BMI achieved 

74.65% accuracy. Feature importance analysis 

revealed that these two non-invasive predictors 

exhibited statistical significance comparable to blood-

based markers. 

These findings demonstrate the potential for 

non-invasive, AI-assisted screening tools as a first-

line approach in resource-limited settings. While the 

accuracy gap (74.65% vs. 91.45%) indicates that non-

invasive models should complement rather than 

replace blood testing, this approach could improve 

screening accessibility and identify high-risk 

individuals requiring further evaluation. 

Study limitations include the need for external 

validation across diverse populations and investigation 

of additional non-invasive parameters to enhance 

predictive performance. Future research should focus 

on integrating family history, lifestyle factors, and 

other readily obtainable metrics to develop more 

comprehensive non-invasive screening models. This 

work establishes a foundation for developing 

accessible, cost-effective diabetes screening tools that 

could contribute to improved early detection and 

management globally. 
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Abbreviation Full Term 

AI Artificial Intelligence 

ML Machine Learning 

BMI Body Mass Index 

HbA1c Hemoglobin A1c 

OGTT Oral Glucose Tolerance Test 

χ² Chi-Square 

ANOVA Analysis of Variance 

PCA Principal Component Analysis 

F1-score Harmonic mean of precision 

and recall 
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