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Abstract

This study evaluated the performance of 24 models for diabetes prediction by using eight predictors: sex, heart disease,
hypertension, smoking history, BMI (Body Mass Index), HbAlc level (Hemoglobin Alc), and blood glucose level obtained
from an open data source, Kaggle. Data preparation involved curating and cleaning to ensure unbiased training and a balanced
dataset before applying the dataset to machine learning training. The research examined data splitting ratios at 70/30, 80/20,
and 90/10. The prediction task focused on the diabetes category: 0 (non-diabetes) and 1 (diabetes). The performance parameters
indicated that the Ensemble Boosted Trees model, particularly with a 70/30 data splitting ratio, achieved the highest accuracy
of 91.45%, precision of 91.29%, recall of 91.65%, and F1-score of 91.37%. Feature selection, including Chi-Square (y?)
ANOVA, Kruskal-Wallis, and principal component analysis have been applied to reduce the complexity and dimensionality
of the model, and it was found that the following parameters were significant for diabetes diagnosis: (1) HbAlc, (2) blood
glucose, (3) BMI, and (4) age. The first two parameters are crucial for medical practitioners to determine whether a patient has
diabetes; however, they are invasive and can only be collected from blood test results. Here, we also discuss the accuracy of
the machine learning model in predicting diabetes without invasive predictors, namely, blood glucose and HbAlc. Our
simplified model using age and BMI still yielded a reasonable accuracy of 74.65%, demonstrating the feasibility of non-blood
test and non-invasive screening, especially in resource-limited settings, where age and BMI are key non-blood test predictors.

Keywords: artificial intelligence; diabetes; feature selection method, dimension reduction method; machine learning; non-
blood test diabetes prediction

1. Introduction
Diabetes mellitus is a chronic metabolic disorder

population, with an estimated 536.6 and 783.2 million
adults living with the condition (Boadu et al., 2024).

characterized by impaired glucose regulation resulting
from insufficient insulin production or ineffective
insulin utilization (Alam et al., 2021; Sarkar et al.,
2019). This results in glucose accumulation in the
bloodstream, causing a metabolic imbalance that, if
unsolved, can result in several health complications,
including cardiovascular disease, neuropathy, vision
problems, and, ultimately, organ damage (Calibo,
2024; Prabhakar et al., 2024).

Diabetes presents a significant global health
challenge, affecting an estimated 10.5% of the world's

Several forms of diabetes exist, each with distinct
challenges and implications for glucose metabolism,
including Type 1, Type 2, gestational diabetes,
secondary diabetes, maturity-onset diabetes of the
young, and latent autoimmune diabetes in adults (Skyler
etal., 2017; Buzzetti et al., 2017). Clinical manifestations
often develop insidiously and include polydipsia,
polyuria, unexplained weight loss, fatigue, and visual
disturbances (Jalilian et al., 2023; Looareesuwan et
al., 2023).
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Early diagnosis of diabetes is crucial, as
patients often remain asymptomatic in the beginning
stages (Carmichael et al., 2021; Pippitt et al., 2016).
According to clinical practice guidelines, screening is
advised based on risk, at any age for overweight or
obese individuals, and beginning at 35 for individuals
not in those categories. (Tiwari & Aw, 2024; Davidson
et al., 2024). Traditional diagnostic methods, including
fasting plasma glucose and HbAlc testing, have
inherent limitations such as cost, invasiveness, and
accessibility barriers, frequently resulting in delayed
detection until complications emerge (Bergman et al.,
2020; Zhang et al., 2023).

Artificial intelligence (Al), especially machine
learning, offers a paradigm shift in diabetes diagnosis
by analyzing complex datasets, including patient
records and blood glucose measurements, to identify
subtle patterns representative of early-stage diabetes
more efficiently and accurately than old-fashioned
approaches (Dagliati et al., 2018; Poorani et al., 2025
; Anupongongarch et al., 2022). However, challenges
remain, such as selecting relevant features and
translating predictions into clinical action. This study
addresses these challenges by systematically evaluating
multiple machine learning models and feature selection
strategies to develop an accurate, non-invasive
approach for early diabetes screening.

Ghosh et al. (2021) examine four machine
learning-based classifiers, achieving an accuracy of
99.35% for the Random Forest classifier, which
included interventional methods such as the insulin
test and glucose level parameters. Similarly, Dritsas
& Trigka (2022) developed multiple models and
evaluated their performance using 10-fold cross-
validation with the Synthetic Minority Over-sampling
Technique (SMOTE) and data splitting. Their best-
performing model, which excluded invasive features,
achieved a top accuracy of 99.22%. Qin et al. (2022)
demonstrated the effectiveness of CATBoost, XGBoost,
Logistic Regression, Random Forest, and Support
Vector Machine classifiers, achieving 82.1% accuracy
and an Area Under the Receiver Operating Characteristic
Curve (AUC) of 0.83. These classifiers were developed
using parameters that included blood test results and
primarily focused on lifestyle-type parameters. While
most existing studies rely heavily on blood test
parameters (Chapakiya et al., 2025; Khanam & Foo,
2021; Rani, 2020), there is limited research on accurate
diabetes risk prediction using only non-invasive,
readily available measurements. Such an approach
could enhance accessibility, reduce costs, and enable

preliminary screening in resource-constrained settings
without requiring invasive blood tests. Previous
research and statistical evaluations have consistently
highlighted four key predictors as most influential in
diabetes diagnosis: Glycated Hemoglobin (HbAlc),
blood glucose level, Body Mass Index (BMI), and
age. Notably, while HbAlc and blood glucose are
derived from invasive blood tests, BMI and age are
non-invasive and readily accessible (Liu et al., 2025;
Sinsophonphap & Thavornsawadi, 2022). This distinction
underpins the potential for developing simplified,
accessible screening tools using non-blood-based
indicators.

In this study, we utilize the open-source dataset
from Mohammed Mustafa on Kaggle (Mustafa, 2023),
which contains 100,000 patient records with eight
clinical predictors. Our method customizes refining
diagnostic indicators to improve accuracy and
interpretability by reducing blood test predictors to
develop a non-invasive diabetes diagnosis approach
and compare the performance of the two approaches.
We evaluated 24 machine learning algorithms to
identify optimal predictive models and determine the
most influential features for diabetes screening.
Feature selection methods are essential for reducing
model complexity, enhancing predictor performance,
and expanding previous research (Pechprasarn et al.,
2025) on ML algorithm parameters for diabetes
prediction.

2. Objectives

1. To improve diabetes prediction and diagnosis
by developing and evaluating machine learning
models that accurately classify diabetic and non-
diabetic individuals.

2. To analyze the impact of different training to
test data ratios on model performance.

3. To develop a self-assessment method for
early diabetes detection through non-invasive predictors
that do not require blood tests, which can improve
accessibility while reducing computational complexity.

3. Materials and Methods

We collected and curated the data for this
research to ensure that the diabetes and non-diabetes
datasets had equal samples. The data rows were
separated into training and test datasets at 70/30,
80/20, and 90/10 ratios. All 24 models used to train
the data are available in MATLAB R2024a and are
included here. The flow of this research is depicted in
Figure 1.
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Figure 1 Research process flow for data preparation and machine learning model evaluation. Modified from “Predicting
Parkinson’s Disease Severity Using Telemonitoring Data and Machine Learning Models: A Principal Component Analysis-
Based Approach for Remote Healthcare Services During the COVID-19 Pandemic” (Pechprasarn et al., 2023)
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Table 1 Description of clinical predictors, data types, and value ranges

Predictor/Label in

Variable Machine Learning Category Values/Value Range
Diabetes Label Nominal 0 = Non-diabetes
1 = Diabetes
Heart Disease Predictor Nominal 0 = Non-Heart Disease
1 = Heart disease
Hypertension Predictor Nominal 0 = There is no continuous increase in blood pressure
levels.
1 = There is a continuous increase in blood pressure
levels.
Smoking History Predictor Nominal No Info = No record of smoking history.
Never = Has not smoked regularly
Former = Previously smoked but no longer does.
Current = Actively smoking.
Ever = often, smoking at least once per day.
BMI Predictor Numerical In the kg/m? unit
(Body Mass Index)
HbAlc level Predictor Numerical In mg% unit
(Hemoglobin Alc)
Blood Glucose level Predictor Numerical In the mg/dL unit
Sex Predictor Nominal Male and Female
Age Predictor Nominal Patients' age in year

3.1 Dataset Details

The dataset for estimating diabetes in this paper
was obtained from Mohammed Mustafa’s data on the
Kaggle website (Mustafa, 2023); the data file is in
Excel format with a .csv extension. This dataset has
100,000 patient data points and eight columns of
predictors for training supervised ML models. Variables
used are sex, age, hypertension, heart disease,
smoking history, BMI, Glycated hemoglobin level
(HbAlc), and blood glucose level, as shown in Table 1.

3.2 Data Curation

The data was processed by curating and
cleaning the diabetic dataset to ensure unbiased
training. The dataset that was obtained has a
significant imbalance. The diabetes dataset contains
8,500 patients, while the non-diabetes dataset has
91,500 patients. Imbalanced data can impact the
machine learning model, causing it to predict “non-
diabetes” more frequently than “diabetes”, resulting
in unfair predictions. To prevent prediction errors
caused by this imbalance, the dataset should be
adjusted to achieve a balanced distribution. This
balanced dataset was created by randomly eliminating
83,000 non-diabetes entries, both classes have 8,500
cases each from this method.

3.3 Dataset for Training and Testing

This dataset should be divided into two files for
data curation: model training and testing. The ratio of
training and testing datasets is determined by
comparing the ratios of 70/30, 80/20, and 90/10 for
training and testing, as shown in Table 2.

Table 2 Training and Testing Dataset Splits by Ratio

Ratio Train Test Total
70/30 11,900 5,100 17,000
80/20 13,600 3,400 17,000
90/10 15,300 1,700 17,000

3.4 Machine Learning Training and Testing

After splitting the data at different ratios, we
compared the accuracy of each ratio. We trained and
tested these datasets using 24 models in MATLAB
R2024a, as listed in Table 3. For the test dataset, we
used the same performance matrix as the training
dataset for easy comparison, including a K-fold cross-
validation (K-fold=5) to calculate performance
metrics, including precision, recall, accuracy, and F1-
score, using the training dataset as demonstrated in
equations (1) - (4) as follows:
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TP + TN

Accuracy = o T @
Precision = 2)
TP + FP
Recall = ——— 3)
TP + FN

2 x Precision x Recall
Fl-score= ——— 4)

Precision + Recall

From this equation, True Positive (TP) refers to
the correct prediction of patients with diabetes, True
Negative (TN) refers to the correct prediction of
patients with non-diabetes, and A False Positive (FP)
occurs when non-diabetes is misclassified as diabetes,
and a False Negative (FN) occurs when diabetes is
misclassified as non-diabetes. The results obtained
from the calculations will indicate the effectiveness of
the model used for training and testing, ensuring that
our model can be improved and developed to enhance
diabetes diagnosis in medical practice.

3.5 Feature Selection and Simplified Model
Feature selection algorithms, including Chi-
Square (%) ANOVA and the Kruskal-Wallis algorithms
identify the crucial factors that reduce the number of
predictors used to train machine learning models. This
process involves adding predictors one by one and
comparing the accuracy results to determine how
many predictors are necessary for this machine
learning model, as well as identifying those that are
less important, thereby reducing the processing
complexity. These have been widely used for

Table 3 24 Models available in MATLAB R2024a

dimensionality reduction. In this research, the
dimension reduction method was applied using
MATLAB to identify the importance and relevance of
each predictor (blood glucose levels, HbAlc, heart
disease, hypertension, smoking history, BMI, sex) to
find the most important predictors, excluding blood
test predictors (HbAlc, blood glucose levels), for
developing a non-invasive diabetes diagnosis
approach Less important predictors were removed,
and the remaining ones were analyzed to assess
whether simple, non-blood-based indicators could be
used effectively for early diabetes screening
(Pechprasarn et al., 2023).

4. Results

This paper explores how Al and machine
learning methods can be improved to achieve the best
performance in predicting diabetes. This project will
compare the accuracy of different ML models and
ratios of training and testing datasets to determine the

most effective approach.

4.1 Training of Classification Models

During the model training phase, this study
utilized dataset splits of 70/30, 80/20, and 90/10 for
training and testing. All machine learning models
were trained using the training dataset, and their
performance was compared and validated based on
key evaluation metrics: precision, recall, F1-score, and
accuracy using 5-fold cross-validation, as presented in
Table 4.

Model Details Model Details
Fine Tree Linear SVM
Tree Medium Tree Quadratic SVM
Coarse Tree SVM Cubic SVM
Boosted Trees Fine Gaussian SVM
Ensemble Bagged Trees Medium Gaussian SVM
RUS Boosted Tree Coarse Gaussian SVM
SVM Kernel Narrow Neural Network
Kernel

Logistic Regression Kernel
Gaussian Naive Bayes
Kernel Naive Bayes
Binary GLM Logistic

Naive Bayes

Binary GLM Logistic

Neural Network

Medium Neural Network
Wide Neural Network
Bilayer Neural Network

Tri-layered Neural Network

Regression Regression
Efficient nglstlc Efficient Lc'>g1stlc Efficient Linear SVM Efficient Linear SVM
Regression Regression
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Table 4 Cross-validation results of 24 models across different data split ratios

Model performance computed using 5-fold cross-validation with a dataset split ratio of 70/30

Model Details Accuracy Precision Recall F1-score

Fine Tree 89.72% 89.19% 90.40% 89.46%

Tree Medium Tree 90.10% 89.49% 90.87% 89.79%

Coarse Tree 85.05% 79.49% 94.47% 82.18%

Binary GLM Logistic Regression ~ Binary GLM Logistic Regression 88.24% 88.36% 88.07% 88.30%
Efficient Logistic Regression Efficient Logistic Regression 88.39% 88.52% 88.22% 88.45%
Efficient Linear SVM Efficient Linear SVM 87.74% 88.47% 86.79% 88.10%
Naive B Gaussian Naive Bayes 83.99% 88.43% 78.22% 86.15%

aive Bayes

Y Kernel Naive Bayes 90.36% 90.46% 90.24% 90.41%

Linear SVM 88.46% 88.34% 88.62% 88.40%

Quadratic SVM 88.61% 88.46% 88.79% 88.53%

SVM Cubic SVM 89.95% 89.19% 90.92% 89.57%

Fine Gaussian SVM 87.85% 85.67% 90.91% 86.74%

Medium Gaussian SVM 89.47% 88.71% 90.45% 89.09%

Coarse Gaussian SVM 88.61% 88.43% 88.86% 88.52%

Boosted Trees* 91.20% 90.49% 92.08% 90.84%

Ensemble Bagged Trees 89.99% 89.73% 90.32% 89.86%

RUS Boosted Tree 90.10% 89.49% 90.87% 89.79%

Narrow Neural Network 90.48% 90.12% 90.92% 90.30%

Medium Neural Network 89.81% 89.51% 90.18% 89.66%

Neural Network Wide Neural Network 87.82% 88.12% 87.43% 87.97%
Bilayer Neural Network 90.08% 89.28% 91.09% 89.67%

Tri-layered Neural Network 89.94% 89.13% 90.97% 89.53%

Kemnel SVM Kermnel 88.82% 87.83% 90.13% 88.32%

erne
Logistic Regression Kernel 87.98% 86.94% 89.39% 87.46%
Model performance computed using 5-fold cross-validation with a dataset split ratio of 80/20

Model Details Accuracy Precision Recall F1-score

Fine Tree 89.98% 89.96% 90.00% 89.97%

Tree Medium Tree 90.62% 90.25% 91.07% 90.43%

Coarse Tree 86.21% 81.87% 93.00% 83.98%

Binary GLM Logistic Regression Binary GLM Logistic Regression 88.51% 88.49% 88.54% 88.50%

ry g g
Efficient Logistic Regression Efficient Logistic Regression 88.48% 88.60% 88.32% 88.54%
Efficient Linear SVM Efficient Linear SVM 88.64% 88.54% 88.76% 88.59%
Naive B Gaussian Naive Bayes 84.19% 88.70% 78.37% 86.39%
aive Bayes

Y Kemel Naive Bayes 90.42% 90.45% 90.38% 90.43%

Linear SVM 88.67% 88.38% 89.04% 88.52%

Quadratic SVM 88.82% 88.21% 89.63% 88.51%

SVM Cubic SVM 90.44% 89.64% 91.46% 90.04%

Fine Gaussian SVM 88.61% 86.48% 91.53% 87.53%

Medium Gaussian SVM 89.74% 88.94% 90.75% 89.34%

Coarse Gaussian SVM 88.74% 88.36% 89.24% 88.55%

Boosted Trees 91.76% 91.21% 92.44% 91.49%

Ensemble Bagged Trees 90.50% 90.30% 90.75% 90.40%

RUS Boosted Tree 90.60% 90.21% 91.07% 90.40%

Narrow Neural Network 90.80% 90.52% 91.15% 90.66%

Medium Neural Network 90.33% 90.35% 90.31% 90.34%

Neural Network Wide Neural Network 88.62% 88.57% 88.68% 88.59%
Bilayer Neural Network 90.68% 90.13% 91.35% 90.40%

Tri-layered Neural Network 90.35% 90.07% 90.71% 90.21%

Kemel SVM Kernel 88.99% 87.92% 90.41% 88.45%

erne
Logistic Regression Kernel 88.03% 86.85% 89.63% 87.43%
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Table 4 Cont.
Model performance computed using 5-fold cross-validation with a dataset split ratio of 90/10
Model Details Accuracy Precision Recall F1-score
Fine Tree 90.25% 89.46% 91.27% 89.85%
Tree Medium Tree 90.46% 89.86% 91.20% 90.16%
Coarse Tree 84.53% 78.11% 95.95% 81.19%
Binary GLM Logistic Regression Binary GLM Logistic Regression 88.39% 88.46% 88.29% 88.42%
Efficient Logistic Regression Efficient Logistic Regression 81.19% 88.55% 88.29% 84.71%
Efficient Linear SVM Efficient Linear SVM 81.12% 88.50% 88.21% 84.65%
. Gaussian Naive Bayes 83.87% 88.57% 78.09% 86.16%
Naive Bayes B
Kernel Naive Bayes 90.34% 90.39% 90.27% 90.37%
Linear SVM 88.51% 88.42% 88.63% 88.46%
Quadratic SVM 88.88% 88.48% 89.39% 88.68%
SVM Cubic SVM 90.39% 89.95% 90.93% 90.17%
Fine Gaussian SVM 88.44% 86.71% 90.78% 87.57%
Medium Gaussian SVM 89.65% 89.09% 90.37% 89.37%
Coarse Gaussian SVM 88.63% 88.45% 88.86% 88.54%
Boosted Trees 91.33% 90.36% 92.54% 90.85%
Ensemble Bagged Trees 90.16% 89.94% 90.44% 90.05%
RUS Boosted Tree 90.46% 89.88% 91.20% 90.17%
Narrow Neural Network 90.66% 90.40% 90.98% 90.53%
Medium Neural Network 90.14% 90.12% 90.16% 90.13%
Neural Network Wide Neural Network 88.59% 88.87% 88.22% 88.73%
Bilayer Neural Network 90.41% 89.91% 91.05% 90.16%
Tri-layered Neural Network 90.52% 90.05% 91.10% 90.28%
Kemel SVM Kernel 88.90% 88.04% 90.03% 88.46%
Logistic Regression Kernel 88.69% 87.88% 89.75% 88.28%
% 1 606 g ] 6895 735
=0 514 = 0 571 7079
[ 1 ] | 0 1
Predicted class Predicted class Predicted class
(@) () ©

Figure 2 Confusion matrices of the trained Ensemble Boosted Trees model at different train-test split ratios:
(a) 70/30, (b) 80/20, (c) 90/10

Among the 24 trained models, the Ensemble
Boosted Trees model for diabetes prediction and
diagnosis produced the best results. The three train-
test split ratios were evaluated: 70/30, 80/20, and
90/10. With a 70/30 split, the Ensemble Boosted Trees
model achieved an accuracy of 91.20%, a precision of
90.49%, a recall of 92.08%, and an Fl-score of
90.84%. With an 80/20 split, the model achieved an
accuracy of 91.76%, a precision of 91.21%, a recall of
92.44%, and an F1-score of 91.49%. For the 90/10
split, the model achieved an accuracy of 91.33%, a
precision of 90.36%, a recall of 92.54%, and an F1-

score of 90.85%. The confusion matrices of the three
splitting ratios are shown in Figure 2.

4.2 Performance Evaluation Using the Test Dataset

After training the models, the trained models
were tested using a separate unseen dataset reserved
for evaluation. The testing dataset was separated using
the same procedure as the training dataset. Model
performance for the test dataset was assessed using
the same performance metrics for a direct comparison
to the validation performance. The detailed results for
each split ratio are presented in Table 5.
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Table S Test dataset performance of 24 models across different data split ratios

Model performance was evaluated using the unseen test dataset with a dataset split ratio of 70/30

Model Details Accuracy Precision Recall F1-score
Fine Tree 90.18% 89.24% 91.37% 89.70%
Tree Medium Tree 90.43% 90.53% 90.31% 90.48%
Coarse Tree 85.31% 79.55% 95.06% 82.33%
Binary GLM Logistic Regression Binary GLM Logistic Regression 88.35% 88.60% 88.04% 88.47%
Efficient Logistic Regression Efficient Logistic Regression 88.51% 88.84% 88.08% 88.68%
Efficient Linear SVM Efficient Linear SVM 88.57% 88.64% 88.47% 88.61%
. Gaussian Naive Bayes 84.02% 88.68% 78.00% 86.28%
Naive Bayes B
Kerel Naive Bayes 90.20% 90.13% 90.27% 90.16%
Linear SVM 88.47% 88.41% 88.55% 88.44%
Quadratic SVM 88.69% 88.61% 88.78% 88.65%
SVM Cubic SVM 90.37% 89.40% 91.61% 89.88%
Fine Gaussian SVM 88.49% 86.66% 90.98% 87.57%
Medium Gaussian SVM 89.61% 89.09% 90.27% 89.35%
Coarse Gaussian SVM 88.59% 88.56% 88.63% 88.57%
Boosted Trees 91.45% 91.29% 91.65% 91.37%
Ensemble Bagged Trees 90.59% 90.68% 90.47% 90.64%
RUS Boosted Tree 90.43% 90.53% 90.31% 90.48%
Narrow Neural Network 90.55% 89.98% 91.25% 90.27%
Medium Neural Network 90.39% 89.68% 91.29% 90.03%
Neural Network Wide Neural Network 89.55% 89.97% 89.02% 89.76%
Bilayer Neural Network 90.37% 88.86% 92.31% 89.61%
Tri-layered Neural Network 90.61% 90.09% 91.25% 90.35%
Kemel SVM Kernel 88.94% 88.10% 90.04% 88.52%
Logistic Regression Kernel 88.59% 87.90% 89.49% 88.25%
Model performance evaluated using the unseen test dataset with a dataset split ratio of 80/20
Model Details Accuracy Precision Recall F1-score
Fine Tree 88.71% 88.52% 88.94% 88.62%
Tree Medium Tree 88.56% 89.13% 87.82% 88.85%
Coarse Tree 83.76% 78.05% 93.94% 80.81%
Binary GLM Logistic Regression Binary GLM Logistic Regression 87.76% 87.81% 87.71% 87.79%
Efficient Logistic Regression Efficient Logistic Regression 88.00% 88.00% 88.00% 88.00%
Efficient Linear SVM Efficient Linear SVM 87.97% 88.31% 87.53% 88.14%
. Gaussian Naive Bayes 83.35% 87.35% 78.00% 85.31%
Naive Bayes N
Kernel Naive Bayes 89.44% 89.10% 89.88% 89.27%
Linear SVM 87.91% 87.76% 88.12% 87.83%
Quadratic SVM 88.18% 87.82% 88.65% 88.00%
SVM Cubic SVM 89.09% 88.34% 90.06% 88.71%
Fine Gaussian SVM 87.53% 85.29% 90.71% 86.39%
Medium Gaussian SVM 88.88% 88.30% 89.65% 88.59%
Coarse Gaussian SVM 87.79% 87.55% 88.12% 87.67%
Boosted Trees 89.94% 89.66% 90.29% 89.80%
Ensemble Bagged Trees 89.50% 89.29% 89.76% 89.40%
RUS Boosted Tree 88.56% 89.13% 87.82% 88.85%
Narrow Neural Network 89.74% 89.30% 90.29% 89.52%
Medium Neural Network 89.32% 89.12% 89.59% 89.22%
Neural Network Wide Neural Network 88.35% 88.95% 87.59% 88.65%
Bilayer Neural Network 89.29% 89.34% 89.24% 89.32%
Tri-layered Neural Network 89.53% 88.75% 90.53% 89.14%
Kemel SVM Kernel 87.56% 86.26% 89.35% 86.90%
Logistic Regression Kernel 86.71% 85.58% 88.29% 86.14%
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Table 5 Cont.
Model performance evaluated using the unseen test dataset with a dataset split ratio of 90/10
Model Details Accuracy Precision Recall F1-score
Fine Tree 90.60% 89.82% 90.35% 89.94%
Tree Medium Tree 89.47% 89.24% 89.76% 89.36%
Coarse Tree 83.71% 77.31% 95.41% 80.38%
Binary GLM Logistic Regression Binary GLM Logistic Regression 87.76% 88.03% 87.41% 87.90%
Efficient Logistic Regression Efficient Logistic Regression 87.88% 88.33% 87.29% 88.11%
Efficient Linear SVM Efficient Linear SVM 87.00% 88.40% 85.18% 87.69%
. Gaussian Naive Bayes 82.88% 88.03% 76.12% 85.38%
Naive Bayes N
Kerel Naive Bayes 89.59% 89.73% 89.41% 89.66%
Linear SVM 87.65% 87.91% 87.29% 87.78%
Quadratic SVM 87.94% 87.99% 87.88% 87.96%
SVM Cubic SVM 90.39% 89.95% 90.93% 90.17%
Fine Gaussian SVM 87.88% 86.51% 89.76% 87.19%
Medium Gaussian SVM 89.00% 89.05% 88.94% 89.02%
Coarse Gaussian SVM 87.88% 88.06% 87.65% 87.97%
Boosted Trees 90.88% 90.74% 91.06% 90.81%
Ensemble Bagged Trees 89.88% 89.60% 90.24% 89.74%
RUS Boosted Tree 89.47% 89.24% 89.76% 89.36%
Narrow Neural Network 90.18% 90.41% 89.88% 90.30%
Medium Neural Network 90.41% 90.84% 89.88% 90.63%
Neural Network Wide Neural Network 88.94% 89.50% 88.24% 89.22%
Bilayer Neural Network 90.41% 90.46% 90.35% 90.44%
Tri-layered Neural Network 89.94% 90.18% 89.65% 90.06%
Kemel SVM Kernel 87.06% 86.63% 87.65% 86.84%
Logistic Regression Kernel 87.24% 86.51% 88.24% 86.87%
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Figure 3 Confusion matrices of the Ensemble Boosted Trees model on the test dataset for three split ratios:
(a) 70/30, (b) 80/20, (c) 90/10

For the 24 trained models evaluated on the test
dataset, the Ensemble Boosted Trees model for
diabetes prediction and diagnosis produced the best
results. Three train-test split ratios were evaluated:
70/30, 80/20, and 90/10. With a 70/30 split, the
Ensemble Boosted Trees model achieved an accuracy
0f 91.45%, a precision of 91.29%, a recall of 91.65%,
and an Fl-score of 91.37%. With an 80/20 split, the
model achieved an accuracy of 89.94%, a precision of
89.66%, a recall of 90.29%, and an Fl-score of
89.80%. For the 90/10 split, the model achieved an

accuracy of 90.88%, a precision of 90.74%, a recall of
91.06%, and an F1-score of 90.81%. Therefore, it can
be concluded that the dataset size was sufficiently
large for all the ratios, and there was no significant
difference among the three cases. The performance
of the 5-fold cross-validation in Table 4 and the test
performance in Table 5 were well within 1.8% for
the ensemble-boosted tree models, indicating an
optimal fit for the models. The confusion matrices of
the three splitting ratios for the test cases are shown in
Figure 3.
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4.3 Feature Selection and Dimension Reduction

Here, three statistical algorithms, including
Chi-Square (x?) ANOVA and the Kruskal-Wallis
algorithms were employed to rank the importance of
each feature for the eight predictors (including HbAlc
level and blood glucose level). The statistical values
of the three ranking algorithms are shown in Figure 4.
We found that four predictors, including HbAlc,
blood glucose levels, age, and BMI, have a statistical
value of infinity across all three algorithms. Even
though BMI does not have an infinite value in the
Kruskal-Wallis algorithm, the value is still considered
high.

HbA1c and blood glucose levels are obtained
from blood tests to measure blood sugar levels, two of
the four most essential predictors in determining
diabetes in medical practice. In other words, if blood
test results are available, these values can indicate
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whether a person has diabetes. The Ensemble Boosted
Trees model was trained by adding one predictor at a
time, as shown in Table 6. The model trained using
three predictors achieved an accuracy of 87.96%,
which was 5% higher than the model trained using
two blood-related parameters, indicating that the BMI
factor plays a crucial role in diabetes prediction.
Adding the age parameter improved the accuracy
performance further by around 2%, achieving 90.79%
accuracy. The rest of the parameters, after four
predictors, did not show significant improvement.
Based on these findings, this research concludes that
only four predictors are necessary for diabetes
prediction, effectively reducing the computational
complexity of machine learning models. The key
predictors identified are HbAlc, blood glucose, age,
and BMI, which are sufficient for accurate diabetes
prediction.
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Figure 4 Statistical importance of each predictor using (a) Chi-Square (?), (b) ANOVA, and (c) Kruskal-Wallis algorithms
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Table 6 Accuracy of Ensemble Boosted Trees model using different combinations of predictors

Number of . Accuracy Accuracy
predictors Predictors of validation of the test
dataset
1 blood glucose 69.41% 69.27%
1 HbAlc 72.13% 73.27%
1 BMI 65.61% 64.76%
1 Age 42.41% 42.51%
2 HbA ¢, blood glucose 82.98% 82.41%
3 HbAlc, blood glucose, BMI 87.96% 88.10%
4 HbA ¢, blood glucose, BMI, age 90.79% 90.86%
5 HbA Ic, blood glucose, BMI, age, hypertension 91.16% 90.96%
6 HbA ¢, blood glucose, BMI, age, hypertension, heart disease 91.06% 91.08%
7 HbA ¢, blood glucose, BMI, age, hypertension, heart disease, smoking history 91.14% 91.25%
8 HbAc, blood glucose, BMI, age, hypertension, heart disease, smoking history, sex 91.49% 91.20%
Table 7 Accuracy of Ensemble Boosted Trees model using only non-blood-based predictors
NumPer of Predictors Accl'lrac‘y Accuracy
predictors of validation of the test dataset
1 BMI 65.61% 64.76%
1 Age 42.41% 42.51%
1 hypertension 59.63% 59.10%
1 heart disease 56.02% 55.67%
1 smoking history 60.37% 59.33%
1 Sex 52.85% 54.12%
2 BM], age 74.65% 73.80%
3 BM]I, age, and hypertension 75.08% 74.55%
4 BMI, age, hypertension, heart disease 75.30% 74.80%
5 BMI, age, hypertension, heart disease, smoking history 75.73% 74.69%
6 BMI, age, hypertension, heart disease, smoking history, sex 75.92% 75.06%

Table 7 shows the accuracy of the models
trained using non-blood parameters, in turn, by adding
one clinical feature. The model trained using only two
parameters, BMI and age, can achieve an accuracy of
74.65%. Adding one extra feature, hypertension,
improves the model by less than 1%.

In contrast, the other two critical predictors are
not derived from blood test results but rather from the
patient's environmental factors. Therefore, the
researcher aims to determine whether it is possible to
predict diabetes using only these two environmental
predictors without relying on blood test results.

From the results shown in Figure 5, the best-
performing model with blood test results was the
Ensemble: Boosted Trees model, achieving a test
accuracy of 91.45% using eight features. In contrast,
the best model without blood test results achieved a
test accuracy of 74.65% and 73.80% for the validation
and test cases, respectively. The significant difference
in accuracy highlights the importance of blood test
results as key predictors. Nevertheless, the model
without blood test results still achieved reasonable

accuracy, suggesting its potential for providing a rough
estimate of diabetes risk.

5. Discussion

The results demonstrate that the Ensemble
Boosted Trees model achieved the best performance
among all machine learning models when applied to
the original dataset containing eight predictors.
However, this study critically examined models using
fewer predictors that demonstrate high potential for
diabetes classification without requiring blood test
results. These two predictors exhibited importance
value of infinity (o), similar to blood glucose levels
and HbAlc, as demonstrated by Chi-Square (y%),
ANOVA, and the Kruskal-Wallis algorithm. Subsequently,
a model using only these two predictors (age and
BMI) eliminated the need for blood test results
(HbAlc and blood glucose levels). The Ensemble
Boosted Trees model outperformed all other models
in predicting diabetes without blood test data. All
train-test splitting ratios yielded consistent model
performance, indicating that the dataset contained



HANMANOP ET AL.
JCST Vol. 16 No. 1, January-March 2026, Article 159

sufficient samples for reliable evaluation. This ensures
that the model is generalized well to unseen data while
maintaining stability in its predictions.

This study highlights and demonstrates the
feasibility of non-blood test-based screening,
providing a direct comparison to blood test screening
using the same dataset. This approach ensures a fair
comparison through 24 machine learning models.
This study underscores the critical role of blood test
results in diabetes prediction, as HbAlc and blood
glucose levels achieved a significantly higher accuracy
of 91.45%. A non-invasive approach using only age
and BMI yielded a reasonable accuracy of 74.65%,
making it a valuable tool for preliminary screening.
Feature selection proves that increasing the number of
predictors by more than four does not significantly
enhance model accuracy. However, this research
spots age and BMI as the most powerful non-blood
predictors. These findings support the feasibility of
implementing a simplified, cost-effective model for
diabetes risk assessment, particularly in resource-
limited settings.

While the non-invasive model demonstrates
promise, several limitations warrant consideration.
The reduced accuracy compared to blood test-based
models (74.65% vs. 91.45%) suggests that non-invasive
screening should complement rather than replace
traditional diagnostic methods. Future research should
investigate the integration of additional non-invasive
biomarkers and validate these findings across diverse
populations to enhance the model's generalizability
and clinical utility.

6. Conclusion

This study evaluated 24 machine learning
models for diabetes prediction, comparing blood test-
based and non-invasive approaches. The Ensemble
Boosted Trees model achieved 91.45% accuracy with
eight predictors including blood markers, while a
simplified model using only age and BMI achieved
74.65% accuracy. Feature importance analysis
revealed that these two non-invasive predictors
exhibited statistical significance comparable to blood-
based markers.

These findings demonstrate the potential for
non-invasive, Al-assisted screening tools as a first-
line approach in resource-limited settings. While the
accuracy gap (74.65% vs. 91.45%) indicates that non-
invasive models should complement rather than
replace blood testing, this approach could improve
screening accessibility and identify high-risk
individuals requiring further evaluation.

Study limitations include the need for external
validation across diverse populations and investigation
of additional non-invasive parameters to enhance
predictive performance. Future research should focus
on integrating family history, lifestyle factors, and
other readily obtainable metrics to develop more
comprehensive non-invasive screening models. This
work establishes a foundation for developing
accessible, cost-effective diabetes screening tools that
could contribute to improved early detection and
management globally.

7. Abbreviations

Abbreviation Full Term

Al Artificial Intelligence

ML Machine Learning

BMI Body Mass Index

HbAlc Hemoglobin Alc

OGTT Oral Glucose Tolerance Test
e Chi-Square

ANOVA Analysis of Variance

PCA Principal Component Analysis
F1-score Harmonic mean of precision

and recall

8. CRediT Statement

Sasipatcha Hanmanop: Methodology, Investigation,
Formal Analysis, Writing — Original Draft, Visualization.
Tatpol Jongsiri: Methodology, Investigation, Formal
Analysis, Writing — Original Draft, Visualization.
Kittitat Waiprasit: Writing — Review & Editing.
Suejit Pechprasarn: Conceptualization, Methodology,
Investigation, Writing — Review & Editing, Project
Administration, Supervision.

9. Acknowledgement

We acknowledge that this research was primarily
designed, written, and conducted by the authors, with
Al tools used to assist in refining language and
presentation. We are grateful for the diabetes dataset
obtained from the open-source Kaggle platform; this
research would not have been possible without access
to this valuable health data resource. We also thank
the Rangsit University Research Institute for providing
financial support for this study.

10. References

Alam, S., Hasan, M. K., Neaz, S., Hussain, N.,
Hossain, M. F., & Rahman, T. (2021).
Diabetes mellitus: Insights from
epidemiology, biochemistry, risk factors,
diagnosis, complications, and comprehensive



HANMANOP ET AL.
JCST Vol. 16 No. 1, January-March 2026, Article 159

management. Diabetology, 2(2), 36-50.
https://doi.org/10.3390/diabetology2020004
Anupongongarch, P., Kaewgun, T., O’Reilly, J. A.,
& Suraamornkul, S. (2022). Design and
construction of a non-invasive blood glucose
and heart rate meter by photoplethysmography.
Journal of Current Science and Technology,
12(1), 89-101.
https://doi.org/10.14456/jcst.2022.9
Bergman, M., Abdul-Ghani, M., Neves, J. S.,
Monteiro, M. P., Medina, J. L., Dorcely, B., &
Buysschaert, M. (2020). Pitfalls of HbAlc in
the diagnosis of diabetes. The Journal of
Clinical Endocrinology & Metabolism,
105(8), 2803-2811.
https://doi.org/10.1210/clinem/dgaa372
Boadu, A. A., Yeboah-Manu, M., Osei-Wusu, S., &
Yeboah-Manu, D. (2024). Tuberculosis and
diabetes mellitus: The complexity of the
comorbid interactions. International Journal
of Infectious Diseases, 146, Article 107140.
https://doi.org/10.1016/}.1jid.2024.107140
Buzzetti, R., Zampetti, S., & Maddaloni, E. (2017).
Adult-onset autoimmune diabetes: Current
knowledge and implications for management.
Nature Reviews Endocrinology, 13(11), 674-
686. https://doi.org/10.1038/nrendo.2017.99
Calibo, M. B. T. (2024). Treatment of chronic and
severe diabetes mellitus with ketoacidosis in a
four-year-old intact female American Pit Bull
Terrier. Asian Journal of Research in Animal
and Veterinary Sciences, 7(2), 109-121.
https://doi.org/10.9734/ajravs/2024/v7i2291
Carmichael, J., Fadavi, H., Ishibashi, F., Shore, A.
C., & Tavakoli, M. (2021). Advances in
screening, early diagnosis and accurate
staging of diabetic neuropathy. Frontiers in
Endocrinology, 12, Article 671257.
https://doi.org/10.3389/fendo0.2021.671257
Chapakiya, 1., Traisuwan, A., Chumpong, S., &
Chumpong, K. (2025). Follow-up period
classification of type 2 diabetes patients using
data mining techniques. Journal of Health
Science and Medical Research, 43(2), Article
€20241083.
https://doi.org/10.31584/jhsmr.20241083
Dagliati, A., Marini, S., Sacchi, L., Cogni, G., Teliti,
M., Tibollo, V., ... & Bellazzi, R. (2018).
Machine learning methods to predict diabetes
complications. Journal of Diabetes Science
and Technology, 12(2), 295-302.
https://doi.org/10.1177/1932296817706375

Davidson, K. W., Barry, M. J., Mangione, C. M.,
Cabana, M., Caughey, A. B., Davis, E. M., ...
& US Preventive Services Task Force. (2021).
Screening for prediabetes and type 2 diabetes:
US preventive services task force
recommendation statement. Jama, 326(8),
736-743.
https://doi.org/10.1001/jama.2021.12531

Dritsas, E., & Trigka, M. (2022). Data-driven
machine-learning methods for diabetes risk
prediction. Sensors, 22(14), Article 5304.
https://doi.org/10.3390/s22145304

Ghosh, P., Azam, S., Karim, A., Hassan, M., Roy,
K., & Jonkman, M. (2021). A comparative
study of different machine learning tools in
detecting diabetes. Procedia Computer
Science, 192, 467-477.
https://doi.org/10.1016/j.procs.2021.08.048

Jalilian, H., Javanshir, E., Torkzadeh, L., Fehresti, S.,
Mir, N., Heidari-Jamebozorgi, M., & Heydari,
S. (2023). Prevalence of type 2 diabetes
complications and its association with diet
knowledge and skills and self-care barriers in
Tabriz, Iran: A cross-sectional study. Health
Science Reports, 6(2), Article e1096.
https://doi.org/10.1002/hsr2.1096

Khanam, J. J., & Foo, S. Y. (2021). A comparison of
machine learning algorithms for diabetes
prediction. ICT Express, 7(4), 432-439.
https://doi.org/10.1016/j.icte.2021.02.004

Liu, H., & Wang, A., Hu, X., Kang, S., Hu, X., Mu,
Y., Wang, Y., & Lyu, Z. (2025). The effects
of glycated hemoglobin and body mass index
on the relationship between the hemoglobin
glycation index and the hypoglycemia risk: A
moderated mediation analysis. Metabolism
and Target Organ Damage, 5, Article 43.
https://doi.org/10.20517/mtod.2025.74

Looareesuwan, P., Boonmanunt, S., Thammasudjarit,
R., Siriyotha, S., Pattanaprateep, O.,
Lukkunaprasit, T., Nimitphong, H., Reutrakul,
S., Attia, J., McKay, G., & Thakkinstian, A.
(2023). Retinopathy prediction in type 2
diabetes: Time-varying Cox proportional
hazards and machine learning models.
Informatics in Medicine Unlocked, 40, Article
101285.
https://doi.org/10.1016/j.imu.2023.101285

Mustafa, M. (2023). A Comprehensive Dataset for
Predicting Diabetes with Medical &
Demographic Data. Retrieved from


https://doi.org/10.3390/diabetology2020004
https://doi.org/10.3390/s22145304
https://doi.org/10.1016/j.imu.2023.101285

HANMANOP ET AL.
JCST Vol. 16 No. 1, January-March 2026, Article 159

https://www .kaggle.com/datasets/iammustafat
z/diabetes-prediction-dataset

Pechprasarn, S., Manavibool, L., Supmool, N.,
Vechpanich, N., & Meepadung, P. (2023).
Predicting Parkinson’s Disease severity using
telemonitoring data and machine learning
models: A principal component analysis-based
approach for remote healthcare services
during the COVID-19 pandemic. Journal of
Current Science and Technology, 13(2), 465—
485.
https://doi.org/10.59796/jcst.V13N2.2023.694

Pechprasarn, S., Srisaranon, N., & Yimluean, P.
(2025). Optimizing diabetes prediction: An
evaluation of machine learning models
through strategic feature selection. Journal of
Current Science and Technology, 15(1),
Article 75.
https://doi.org/10.59796/jcst. V15N 1.2025.75

Pippitt, K., Li, M., & Gurgle, H. E. (2016). Diabetes
mellitus: Screening and diagnosis. American
Family Physician, 93(2), 103-109.

Poorani, K., Balakannan, S. P., & Karuppasamy, M.
(2025). Mitigating data imbalance for robust
diabetes diagnosis using machine learning and
explainable artificial intelligence. Journal of
Current Science and Technology, 15(3),
Article 111.
https://doi.org/10.59796/jcst. V15N3.2025.111

Prabhakar, P. K. (2024). Glucose to complications:
Understanding secondary effects in diabetes
mellitus. Sumatera Medical Journal, 7(2), 87-
95. https://doi.org/10.32734/sumej.v7i2.15998

Qin, Y., Wu, J., Xiao, W., Wang, K., Huang, A., Liu,
B., ... & Ren, Z. (2022). Machine learning
models for data-driven prediction of diabetes
by lifestyle type. International Journal of
Environmental Research and Public Health,

19(22), Article 15027.
https://doi.org/10.3390/ijerph192215027

Rani, K. J. (2020). Diabetes prediction using
machine learning. International Journal of
Scientific Research in Computer Science,
Engineering and Information Technology,
6(4), 294-305.
https://doi.org/10.32628/CSEIT206463

Sarkar, B. K., Akter, R., Das, J., Das, A., Modak, P.,
Halder, S., ... & Kundu, S. K. (2019). Diabetes
mellitus: A comprehensive review. Journal of
Pharmacognosy and Phytochemistry, 8(6),
2362-2371.

Sinsophonphap, T., & Thavornsawadi, K. (2022).
The cut-off value of HbAlc¢ for prediabetes
and diabetes among obese children and
adolescents. Vajira Medical Journal: Journal
of Urban Medicine, 66(4), 299-310.
https://doi.org/10.14456/vm;j.2022.30

Skyler, J. S., Bakris, G. L., Bonifacio, E., Darsow,
T., Eckel, R. H., Groop, L., ... & Ratner, R. E.
(2017). Differentiation of diabetes by
pathophysiology, natural history, and
prognosis. Diabetes, 66(2), 241-255.
https://doi.org/10.2337/db16-0806

Tiwari, D., & Aw, T. C. (2024). The 2024 American
Diabetes association guidelines on standards
of medical care in diabetes: Key takeaways
for laboratory. Exploration of Endocrine and
Metabolic Diseases, 1(4), 158-166.
https://doi.org/10.37349/eemd.2024.00013

Zhang, J., Zhang, Z., Zhang, K., Ge, X., Sun, R., &
Zhai, X. (2023). Early detection of type 2
diabetes risk: Limitations of current diagnostic
criteria. Frontiers in Endocrinology, 14,
Article 1260623.
https://doi.org/10.3389/fend0.2023.1260623


https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset
https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset
https://doi.org/10.59796/jcst.V13N2.2023.694
https://doi.org/10.59796/jcst.V15N3.2025.111
https://doi.org/10.14456/vmj.2022.30

