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Abstract

Numerous individuals deal with incurable illnesses, such as acquired immunodeficiency syndrome (AIDS), daily. One
of the objectives of this study is to assist AIDS patients and healthcare professionals by creating selective machine-learning
models in MATLAB R2024b, which could reduce the medical costs as well as the time required to examine the patients, to
aid in personalizing patient treatment, and optimize healthcare management through feature selection techniques by lessening
the number of attributes used in the operational model. The dataset named AIDS Clinical Trials Group Study 175 analyzed, is
obtained from open-source Kaggle and consists of 23 predictors, including time, treatment indicator, age, weight, hemophilia,
homosexual activity, history of IV drug use, Karnofsky score, History of non-ZDV antiretroviral therapy, ZDV history 30 days
before dataset collecting period, ZDV history, antiretroviral therapy history, race, gender, symptom indicator, treatment
indicator, treatment of off-treatment before 96 + 5 weeks, CD4 count, and CDS8 count. It was randomly split into a training and
testing dataset in an 80:20 ratio to train 34 machine learning models and identify the best-performing model. Feature selection
methods include Minimum Relevance and Maximum Relevance, Minimum Redundancy, Chi Square (Xz), ANOVA, and
Kruskal-Wallis to highlight the importance of each clinical feature. Here, the Boosted Tree (Tree) achieved the highest
accuracy of 87.86%. Each model was then tested on the test dataset, and the results were compared with those from the previous
procedure. The models also underwent feature-selection analysis to determine the significance of each predictor and the
minimum number of predictors required to function efficiently. Finally, we conclude that the model with the best performance
is the Linear SVM (SVM), with 85.0% accuracy and 5 or 6 predictors, including (1) time, (2) c¢d420, (3) karnof, (4) cd40, (5)
730, and (6) str2.
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1. Introduction sharing, and vertical transmission during pregnancy,

Acquired immunodeficiency syndrome (AIDS)
represents the most advanced stage of human
immunodeficiency virus (HIV) infection, characterized
by severe immunosuppression and increased
susceptibility to opportunistic infections (Chanthara et
al., 2025; Van Heuvel et al., 2022). HIV transmission
occurs through sexual contact, exposure to
contaminated blood or body fluids via needle

delivery, or breastfeeding (Sahoo et al., 2017). As a
member of the family Retroviridae, genus Lentivirus,
HIV was first identified in 1983 (Gallo & Montagnier,
1987). Two distinct viral subtypes exist: HIV-1 and
HIV-2, which originated from separate zoonotic
transmissions of simian immunodeficiency virus
(SIV) (Motomura et al., 2008). Despite structural
similarities in their genetic material, these subtypes
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exhibit substantial molecular divergence, sharing only
approximately 60% amino acid sequence identity and
48% nucleotide sequence identity (Motomura et al.,
2008).

The global HIV/AIDS epidemic continues to
pose a critical public health challenge. As of 2022,
approximately 40.4 million people were living with
HIV worldwide (Wu et al., 2024), with no definitive
cure currently available. In 2023 alone, HIV-related
illnesses claimed 630,000 lives, while 1.3 million new
infections were reported (UNAIDS, 2024). Although
global prevention efforts have achieved substantial
progress, new infection rates have declined by 60%
since their 1995 peak (Payagala & Pozniak, 2024) the
persistent disease burden necessitates improved
prognostic tools and treatment optimization strategies.

Clinical management of HIV/AIDS relies
heavily on CD4 and T-lymphocyte monitoring, as
these immune cells are the primary targets of HIV
infection. Normal CD4 counts range from 500 to
1,500 cells/mm?; a decline below 200 cells/mm?
indicates progression to AIDS and signals critical
immunodeficiency (Battistini et al., 2023). While
antiretroviral therapy (ART) has transformed HIV
from a fatal diagnosis to a manageable chronic
condition, significant treatment gaps persist.
Although more than 26 million people living with
HIV receive ART, over 12 million remain without
access to life-saving treatment due to inadequate
healthcare infrastructure and limited harm reduction
programs in many regions (Kumabh et al., 2023). These
disparities in access to care, combined with the
complexity of individualized treatment planning,
underscore the need for advanced predictive tools
to optimize resource allocation and personalize
patient management. Machine learning approaches
have shown promise in HIV prevention research,
supporting diagnostic accuracy and informing clinical
decision-making (Marcus et al., 2020).

Recent advances in artificial intelligence have
demonstrated the utility of machine learning in
HIV/AIDS care. For instance, predictive models have
been deployed to identify high-risk populations for
targeted testing interventions and to optimize
prevention strategies through geospatial analysis
(Bukachi et al., 2024). Similarly, Al-assisted spatial
mapping has enabled identification of vulnerable
communities requiring enhanced public health
interventions (Tiribelli et al, 2024). Machine
learning-based risk assessment tools have also been
developed to predict HIV infection risk using large-
scale clinical data. One notable example analyzed

over one million patient visits to sexual health centers
between 2008 and 2022, demonstrating the feasibility
of personalized risk stratification to guide prevention
efforts (Latt et al., 2024).

Despite these advances, machine learning
applications in HIV/AIDS research have primarily
focused on infection risk prediction and diagnostic
support rather than prognostic modeling for patients
already diagnosed with AIDS. Several studies have
explored mortality prediction for specific HIV-
associated opportunistic infections. For example, Shi
et al. (2022) developed a machine learning model to
predict mortality in HIV patients with Talaromycosis,
a severe fungal infection caused by Talaromyces
marneffei. While valuable, such disease-specific
models have limited generalizability to the broader
AIDS patient population and typically require
extensive clinical parameters, potentially limiting
their practical utility in resource-constrained settings.

A critical gap exists in the literature regarding
machine learning models specifically designed
to predict survival outcomes among AIDS patients
using streamlined clinical features. This research
addresses this gap by developing and validating
machine learning models that predict survival
duration in AIDS patients using a substantially
reduced set of clinical predictors. Through systematic
feature selection analysis, we identify the minimum
number of clinical parameters required to maintain
high predictive accuracy, thereby reducing diagnostic
burden, lowering healthcare costs, and facilitating
implementation  in  resource-limited  settings.
Furthermore, this study provides comprehensive
insights into the relative importance of various
HIV/AIDS-related clinical factors in survival
prediction, establishing a methodological framework
for future predictive analytics research in HIV/AIDS
care. By demonstrating that accurate survival
prediction can be achieved with fewer clinical inputs,
our findings have the potential to improve treatment
planning, optimize healthcare resource allocation, and
enhance patient care outcomes, particularly in settings
where comprehensive diagnostic testing may be
unavailable or prohibitively expensive.

2. Objectives

1.To develop and validate a machine-learning
model capable of predicting survival probability and
personalized survival time for AIDS patients, as well
as facilitating early disease detection.

2.To explore and gain in-depth knowledge
about AIDS and HIV through algorithmic analysis of
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patient data, which may assist in future treatment
strategies.

3. To provide fundamental tools and knowledge
related to machine learning for future clinical research
on AIDS and HIV.

4.To develop an interpretable Al-based
diagnostic tool with high accuracy for AIDS patients,
based on everyone’s profile.

3. Materials and Methods

This section describes the procedures and
materials used in this study, including the predictors
and labels in the dataset, the data source, the data
handling process, and the software used. Furthermore,
the procedures will be demonstrated as a flowchart in
Figure 1 below.

3.1 Dataset and Study Population

This study utilized data from the AIDS Clinical
Trials Group Study 175 (ACTG 175), a randomized,
double-blind clinical trial comparing nucleoside
monotherapy with combination therapy in HIV-
infected adults (Hammer et al., 1996). The dataset,
accessed through the Kaggle open-source platform
in February 2025 under the Open Database License
(ODbL), contains clinical and demographic information
from 2,139 patients. All participants had CD4 cell
counts between 200 and 500 cells/mm? at enrollment.
The dataset comprises 23 predictor variables and one
binary outcome variable (survival status at study
conclusion).

Download The AIDS Clinical Trials Group
Study 175 Dataset from Kaggle

v

Divide the intial dataset into 2 datasets; training
and testing dataset

L 2

rain machine learning
dataset

models using the training

5/

h. 4

se testing dataset to test and validate the model’s
accuracy

Check if it is the best
model or not

Use Feature Selection to analyze and find the model
with the least variables needed to get accurate

outcomes

|

Repeat the process to find the best model with
lesser variables

Figure 1 Flowchart representing the flow of data and procedures in the proposed system.
The figure is modified from Pechprasarn et al. (2025)



PECHPRASARN ET AL.
JCST Vol. 16 No. 1, January-March 2026, Article 158

The 23 predictor variables include: (1) time to
study event or censoring (days), (2) age at enrollment
(years), (3) weight (kg), (4) hemophilia diagnosis,
(5) homosexual activity, (6) history of intravenous
drug use, (7) Karnofsky performance score, (8) race,
(9) gender, (10) antiretroviral therapy history prior to
study, (11) symptomatic HIV indicator, (12) CD4
count at 96 + 5 weeks, (13) CD4 count at baseline,
(14) CD8 count at 96 =5 weeks, (15) CD8 count
at baseline, (16) treatment indicator for non-ZDV
antiretroviral therapy, (17) ZDV use in the 30 days
before study enrollment, (18) days of prior ZDV use,
(19) ZDV use indicator, (20) stratification indicator,
(21) treatment indicator, (22) treatment of off-
treatment status before 96 + 5 weeks, and (23) days
of prior non-ZDV antiretroviral use. Complete
definitions are provided in Table 1.

The outcome variable indicates patient survival
status at study conclusion: 0 = alive (n = 1,618;
75.6%) and 1 = deceased (n = 521; 24.4%). Although

this dataset is publicly available and exempt from
additional ethical review, all analyses were conducted
in accordance with ethical principles for medical
research involving human data.

3.2 Data Preprocessing and Class Imbalance
Management

The substantial class imbalance in the original
dataset (1,618 survivors vs. 521 deceased) posed
a risk of model bias toward the majority class. Two
primary approaches exist for addressing class
imbalance: oversampling minority-class instances
or undersampling  majority-class  instances.
Oversampling techniques, such as Synthetic Minority
Over-sampling Technique (SMOTE), generate
synthetic minority-class samples but may introduce
noise, increase the risk of overfitting, and perform
poorly on high-dimensional data (Wongvorachan et
al., 2023; Matharaarachchi et al., 2024).

Table 1 Predictors and their definition from the Kaggle AIDS Clinical Trials Group Study 175 Dataset

Predictors Details
time The number of days to failure or censoring.
trt Treatment indicator. 0: ZDV only, 1=ZDV + ddl, 2=ZDV + zal, and 3= ddl only
age Age in years.
wtkg Weight in kilograms.
hemo Hemophilia. 0 =No and 1 = Yes
homo Homosexual activity. 0 =No and 1 = Yes
drugs History of IV drug use. 0 =No and 1 = Yes
karnof Karnofsky score on the scale of 1 to 100
. Non-ZDYV antiretroviral therapy was performed before the dataset collection period. 0 = NO
oprior
and 1 = Yes
730 ZDV in the 30 days before the dataset collection period. 0 = NO and 1 = Yes
zprior ZDV before the dataset collection period. 0 = NO and 1 = Yes
. The number of days before the dataset collecting period, the patient was on antiretroviral
preanti
therapy.
race Race. 0 = White and 1 = Non-white
gender Gender. 0 = Female and 1 = Male
str2 Antiretroviral history. 0 = Naive and 1 = Exposed
strat Antiretroviral stratification, 1=Antiretroviral naive, 2=>1 but < 52 weeks of prior and 3=>
52 weeks of prior
symptom Symptomatic indicator. 0: Asymptomatic and 1: Symptomatic
treat Treatment indicator. 0 = ZDV only and 1 = Others
offtrt An indicator of an off-treatment period before 96 + 5 weeks. 0 =No and 1 = Yes
cd40 CD4 counts.
cd420 CD4 counts at 20 £ 5 weeks.
cd80 CDS counts.
cd820 CDS8 counts at 20 £ 5 weeks.
Label Details

label Patient’s status. 0: Censoring and 1: Failure
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We employed random undersampling of the
majority class for three reasons: (1) the majority class
contained sufficient cases for robust model training
after reduction, (2) undersampling preserves the
original data distribution without introducing
synthetic cases, and (3) reduced dataset size improved
computational efficiency while maintaining statistical
power. While undersampling discards potentially
informative majority class instances, the remaining
sample size (832 patients for training) was adequate
for the modeling objectives.

3.3 Training and Testing Dataset Partitioning

The original 2,139 patient records were
partitioned into training and testing subsets using an
80:20 ratio, a standard practice in machine learning
that balances model learning capacity with adequate
validation sample size. The partition was
implemented in two stages:

First, to create a balanced training set, we
randomly selected 416 cases from each outcome class
(832 total: 416 survivors, 416 deceased) using random
undersampling of the majority class. This balanced
distribution prevents model bias toward the majority
class during training. A fixed random seed (not
specified in the original implementation) was used to
ensure reproducibility.

Second, the remaining 1,307 patient records
(1,202 survivors, 105 deceased) constituted the
independent testing dataset. Critically, the testing set
intentionally preserved the original class distribution
(approximately 92% survivors, 8% deceased) to
reflect real-world population characteristics and
provide a realistic evaluation of model performance in
clinical settings.

All preprocessing and partitioning were
conducted before model training to prevent data
leakage, ensuring that no information from the testing
set influenced model development.

3.4 Machine Learning Model Development and
Training

We trained and evaluated 34 classification
models representing diverse algorithmic approaches
to identify the optimal model for predicting AIDS
patient survival. Models were implemented using the
Classification Learner Toolbox in MATLAB R2024b,
which provides built-in hyperparameter optimization
capabilities.

Model Selection and Categories: Models were
selected from seven prominent algorithm families:
e Decision Trees: Fine Tree, Medium Tree,
Coarse Tree

o Support Vector Machines (SVM): Linear,
Quadratic, Cubic, Fine Gaussian, Medium
Gaussian, Coarse Gaussian, Efficient Linear

e Logistic Regression: Binary logistic

regression and Efficient
o Naive Bayes: Gaussian and Kernel variants
o K-Nearest Neighbors (KNN): Fine, Medium,
Coarse, Cosine, Cubic, Weighted

e Ensemble Methods: Boosted Trees, Bagged
Trees, RUSBoosted Trees

o Subspace Discriminant, Subspace KNN

e Neural Networks: Narrow, Medium, Wide,
Bilayered, Trilayered configurations

e Discriminant: Linear, Quadratic

e Kernel: SVM, Logistic Regression

Hyperparameter Optimization: Automated
hyperparameter optimization was performed for each
model using Bayesian optimization with the following
settings:

o Optimization objective: Minimize classification

error

e Maximum iterations: 30 per model

o Cross-validation: 5-fold (described below)

The hyperparameters optimized varied by
algorithm but typically included regularization
parameters, kernel functions, number of neighbors,
tree depth, learning rates, and ensemble size, where
applicable.

Cross-Validation Strategy: All models were
trained on the balanced training dataset (832 patients)
using 5-fold cross-validation. This approach partitions
the training data into five equal subsets, training each
model five times on four subsets while validating on
the remaining subset. The 5-fold configuration
balances computational efficiency with reliable
performance estimation and is standard practice for
datasets of this size. Cross-validation performance
metrics (Table 2) represent the average across all five
folds.

Model Performance Evaluation: Following
training and cross-validation, all 34 models were
evaluated on the independent testing dataset (1,307
patients) to assess generalization performance. Model
performance was quantified using five standard
classification metrics, as shown in Equations (1) to

()2
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TP+ TN

Accuracy = o TN @)
Precision = 2)
TP + FP
Recall = —— 3)
TP + FN
Specificity = ™ 4
F1 score =2 Precision x Recall (5)

Precision + Recall

TP and TN are regarded as true positive cases
and true negative cases, respectively, and FP and FN
are regarded as false positive and false negative cases,
respectively.

Where TP = true positives (correctly predicted
deceased), TN = true negatives (correctly predicted
survivors), FP = false positives (survivors incorrectly
predicted as deceased), and FN = false negatives
(deceased incorrectly predicted as survivors).

These metrics provide complementary
perspectives on model performance: accuracy
indicates overall correctness, precision reflects
positive prediction reliability, recall measures
sensitivity to the minority class (deceased patients),
specificity indicates majority class performance, and
F1-score balances precision and recall. For clinical
applications, recall (identifying patients at risk of
death) and specificity (avoiding false alarms) are
particularly important for resource allocation and
treatment planning.

Model Selection Criteria: The optimal model
was selected based on: (1) high testing accuracy, (2)
minimal performance degradation between cross-
validation and testing (indicating good generalization),
(3) balanced performance across all metrics, and (4)
stability across the cross-validation folds.

3.5 Feature Selection and Importance Analysis

To identify the minimum set of clinical
predictors necessary for accurate survival prediction,
we conducted systematic feature selection analysis
using four complementary statistical methods: Minimum
Redundancy Maximum Relevance (MRMR), Chi-
Square ()°), Analysis of Variance (ANOVA), and
Kruskal-Wallis test. These methods were selected to
capture different aspects of feature importance:
MRMR identifies features with maximum relevance
to the outcome and minimum redundancy with other
features, > and ANOVA evaluate association strength
using parametric approaches, and Kruskal-Wallis
provides a non-parametric alternative suitable for
non-normal distributions.

Feature Importance Ranking: Each method
independently ranked all 23 predictors according to
their contribution to survival prediction, generating
four separate importance rankings (Table 4). By
comparing rankings across methods, we identified
predictors consistently ranked as important, providing
robust evidence of their prognostic value.

Sequential Feature Addition Analysis:
Following feature importance ranking, we employed
a sequential forward selection approach to determine
the minimum predictor set. Starting with the highest-
ranked feature, we iteratively added predictors one at
a time according to their importance ranking. At each
step, we retrained the best-performing model (Linear
SVM, identified in Section 4.2) using only the
selected features and evaluated performance on both
training (via 5-fold cross-validation) and testing
datasets.

This sequential analysis generated a series of
models using 1, 2, 3, ..., up to 10 predictors, allowing
us to identify the point at which additional features
provided minimal performance improvement. The
optimal feature set was defined as the minimum
number of predictors that achieved performance
comparable to the complete 23-predictor model
(within 2—3% accuracy).

Consensus Feature Selection: To ensure
robustness, we prioritized features consistently ranked
highly across multiple selection methods. The final
reduced predictor set was validated by: (1) achieving
comparable or superior accuracy to the full model, (2)
demonstrating consistent performance across cross-
validation folds, and (3) showing stable rankings
across different feature selection algorithms.

This comprehensive feature selection procedure
serves two purposes: identifying the most prognostically
important clinical factors and establishing a
streamlined model suitable for resource-constrained
clinical settings where comprehensive diagnostic
testing may be impractical.

3.6 Statistical Analysis and Software

All data preprocessing, model training, cross-
validation, and feature selection were performed
using MATLAB R2024b (MathWorks, Natick, MA,
USA) with the Statistics and Machine Learning Toolbox
and Classification Learner App. Performance metrics
were calculated using standard confusion matrix-
based formulas. Model comparisons were based on
point estimates of accuracy and other performance
metrics, with full confusion matrices reported to
enable comprehensive performance assessment.
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4. Results
4.1 Model Performance Using Complete Predictor
Set

We trained and evaluated 34 machine learning
models representing seven algorithm families using
all 23 clinical and demographic predictors (Table 1).
Training was conducted on the balanced dataset (832
patients) using 5-fold cross-validation. Complete
training performance results for all models are
presented in Table 2.

Three models achieved the highest cross-
validation accuracy: Boosted Trees (87.86%), RUS
Boosted Trees (87.02%), and Bagged Trees (86.90%),
with their confusion matrices shown in Figures 2a-c.
These ensemble methods substantially outperformed

Model 2.23 (Boosted Trees)

Model 2.27 (RUSBoosted Trees)

single-classifier approaches, with the next-highest
accuracy being 85.00% for Linear SVM. Among
individual algorithm families, Support Vector
Machines demonstrated the strongest and most
consistent performance, with Linear, Quadratic, and
Cubic SVM variants achieving accuracy between
80-85%.

Three models Linear Discriminant Analysis,
Quadratic Discriminant Analysis, and Gaussian Naive
Bayes could not be trained successfully due to
mathematical constraints arising from the data
structure and distributional assumptions and are
marked as failed in Table

Model 2.24 (Bagged Trees)

] 87.0% ErE313.0% " ] 86.8% EEE:Y13.2% ErEL413.5%
[
4 & 4
o O o
[ (] (]
] 2 2
= = =

1 11.3% EEERET EEREA11.3% 1 87.3% \ENL Y&LA12.7%

0 1 - 0 1 - -
Predicted Class Predicted Class Predicted Class
(a) (c)

Figure 2 Confusion matrices of the top 3 models with the highest accuracy, trained with 23 predictors (a) Boosted Trees
(Ensemble), (b) RUS Boosted Trees (Ensemble), and (c) Bagged Trees (Ensemble)

Table 2 Classification validation accuracy of models trained with 23 predictors using a 5-fold cross-validation method

F1 Average of
Model Details Accuracy Specificity Precision Recall Score AUC Performance
Metrics
Fine Tree 0.8389 0.8438 0.8422 0.8341 0.8382 0.8818 0.8398
Tree Medium Tree 0.8690 0.8702 0.8699 0.8678 0.8688 0.9115 0.8692
Coarse Tree 0.8462 0.8293 0.8349 0.8630 0.8487 0.8542 0.8433*
Linear
L Discriminant ) ) ) ) ) ) )
Discriminant B
Quadratic
Discriminant
Binary GLM Binary GLM
Logistic Logistic 0.8522 0.8967 0.8865 0.8077 0.8453 0.9051 0.8608
Regression Regression
Effici
l?levt Efficient Logistic
Logistic . 0.8281 0.8606 0.8509 0.7957 0.8224 0.8943 0.8338
. Regression
Regression
Efficient — Efficient Linear 433 0.8654 08530 07813 08156  0.8956 0.8307
Linear SVM SVM
Gaussian Naive
. Bayes
Naive Bayes X | Nai
eme? Nalve 0.8005 0.8510 0.8342 07500  0.7899  0.8658 0.8089

Bayes
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Table 2 Cont.

F1 Average of
Model Details Accuracy Specificity Precision Recall Score AUC Performance
Metrics
Linear SVM 0.8377 0.8870 0.8747 0.7885  0.8293  0.9120 0.8470*
Quadratic SVM 0.8341 0.8510 0.8458 08173 08313 09119 0.8370
Cubic SVM 0.8065 0.8221 0.8164 07909  0.8034  0.8839 0.8090
Fine Gaussian
SUM Sum 0.6058 03221 0.5675 0.8894 06929  0.7138 0.5962
Medium 0.8486 0.8702 0.8643 08269  0.8452  0.9159 0.8525
Gaussian SVM
COMS;\?;“SS“‘“ 0.8257 0.8966 0.8796 07548 08124  0.9035 0.8392*
Fine KNN 0.6851 0.6875 0.6860 06827 06843  0.6851 0.6853
Medium KNN 0.7548 0.8389 0.8064 06707 07323 0.8143 0.7677
. Coarse KNN 0.7464 0.8510 0.8116 0.6418 07168  0.8255 0.7627
Cosine KNN 0.7548 0.8365 0.8046 06731 07330 0.8197 0.7673
Cubic KNN 0.7356 0.8173 0.7816 0.6538 07120  0.8021 0.7471
Weighted KNN 0.7680 0.7981 0.7852 07380 07608  0.8214 0.7723
Boosted Trees 0.8786* 0.8702 0.8723 0.8870  0.8796  0.9390 0.8770
Bagged Trees 0.8690* 0.8654 0.8663 0.8726  0.8695  0.9302 0.8683
— Disslfr’;fx:m 0.8329 0.8990 0.8837 07668 08211  0.8942 0.8456
Subspace KNN 0.7897 0.8029 0.7975 07764 07868  0.8709 0.7916
RUST]i Z:Sted 0.8702% 0.8678 0.8684 08726 08705  0.9082 0.8697
Na;z:;ﬁ?ral 0.8209 0.8125 0.8156 08293 08224  0.8477 0.8196
Me‘g::viiuml 0.8065 0.8149 0.8117 07981  0.8048  0.8541 0.8078
Ni‘:;ﬁk Wll\ld:;:z::al 0.8077 0.8149 0.8122 0.8005  0.8063  0.8725 0.8088
B 11;1 ii;:firal 0.7993 0.8053 0.8029 07933 07981  0.8390 0.8002
Tri-layered
0.8005 0.7957 0.7976 0.8053  0.8014  0.8354 0.7998
Neural Network
SVM Kemel 0.7813 0.7957 0.7896 0.7668  0.7780  0.8638 0.7833
Kernel Logisti.c
Regression 0.7849 0.7909 0.7883 07788 07836  0.8692 0.7857
Kernel

* indicates trained model(s) with the top 3 performance.

Model 11 (Linear SVM)

CENE111.3%

True Class

-X-3421.2%

TPR FNR
Predicted Class

Figure 3 Confusion matrix for Linear SVM evaluated on the independent test dataset (1,307 patients) using all 23 predictors



PECHPRASARN ET AL.
JCST Vol. 16 No. 1, January-March 2026, Article 158

4.2 Model Generalization and Selection for
Feature Selection Analysis

All successfully trained models were evaluated
on the independent testing dataset (1,307 patients) to
assess generalization performance (Table 3). The
testing phase revealed substantial performance
degradation for several high-training-accuracy models,
indicating overfitting. Most notably, the three top-
performing models during training showed marked
accuracy reductions when tested on unseen data:
Boosted Trees decreased from 87.86% to 82.40% (A =
—-5.46%), RUS Boosted Trees from 87.02% to 80.15%
(A = -6.87%), and Bagged Trees from 86.90% to
81.95% (A =—-4.95%).

In contrast, several models demonstrated
superior generalization stability. Coarse Tree achieved
the highest testing accuracy at 84.05%, while Linear
SVM obtained 82.25% accuracy with minimal
degradation from its training performance (85.00%
training vs. 82.25% testing; A = —2.75%). Table 3

presents complete performance metrics (accuracy,
precision, recall, specificity, F1-score) for all models
on the testing dataset.

To select the optimal model for subsequent
feature selection analysis, we prioritized generalization
stability over raw training accuracy, as models that
generalize well are more likely to perform reliably in
clinical settings. Linear SVM demonstrated the most
consistent performance across training and testing
phases, with performance degradation of less than 3%
across all metrics. The model achieved 82.25%
accuracy, 87.40% specificity, 85.95% precision,
77.10% recall, 81.29% F1-score, and 88.46% AUC on
the testing dataset (Figure 3). The high specificity
(87.40%) indicates a strong ability to correctly
identify surviving patients, while moderate recall
(77.10%) suggests some false negatives (deceased
patients incorrectly predicted as survivors). Based on
its balanced performance and excellent generalization,
Linear SVM was selected for feature selection analysis.

Table 3 Testing performance of models evaluated on independent test dataset (n=1,307) using all 23 predictors

F1 Average of
Model Details Accuracy Specificity Precision Recall Score AUC Performance
Metrics
Fine Tree 0.7680 0.7930 0.7821 0.7430 0.7621 0.7769 0.7715
Tree Medium Tree 0.7985 0.8350 0.8220 0.7620 0.7909 0.8145 0.8044
Coarse Tree 0.8405* 0.7860 0.8070 0.8950 0.8487 0.8407 0.8321
Linear
. Discriminant ) ) ) ) ) ) )
Discriminant -
Quadratic
Discriminant
Binary GLM Binary GLM
Logistic Logistic 0.8215 0.8530 0.8431 0.7900 0.8157 0.8766 0.8269
Regression Regression
Effici
1(31e-nt Efficient Logistic
Logistic . 0.7975 0.8710 0.8488 0.7240 0.7814 0.8683 0.8103
. Regression
Regression
Efficient Efficient Linear 7999 0.8650 0.8445 07330  0.7848  0.8792 0.8104
Linear SVM SVM
Gaussian Naive
.. Bayes
Naive Bayes "
Kernel Naive
0.7420 0.8360 0.7980 0.6480 0.7152 0.8186 0.7560
Bayes
Linear SVM 0.8225* 0.8740 0.8595 0.7710 0.8129 0.8846 0.8318
Quadratic SVM 0.8105 0.8400 0.8300 0.7810 0.8047 0.8723 0.8154
Cubic SVM 0.7605 0.7880 0.7757 0.7330 0.7537 0.8196 0.7643
Fine Gaussian 0.6140 0.2760 05680 09520 07115  0.6781 0.6025
SVM SVM
Med‘“rsnvﬁ;’:uss‘an 0.8045 0.8280 0.8195 07810 07998  0.8630 0.8083
Coarse Gaussian
0.8115 0.8800 0.8610 0.7430 0.7976 0.8878 0.8239

SVM
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F1 Average of
Model Details Accuracy  Specificity Precision Recall Score AUC Performance
Metrics
Fine KNN 0.6435 0.6580 0.6478  0.6290  0.6383 0.6433 0.6446
Medium KNN 0.6550 0.8150 07279 04950  0.5893 0.7595 0.6732
KN Coarse KNN 0.7100 0.8390 0.7830  0.5810  0.6670  0.7632 0.7283
Cosine KNN 0.6730 0.8030 07338 0.5430  0.6241 0.7620 0.6882
Cubic KNN 0.6195 0.8010 0.6876 04380  0.5351 0.7196 0.6365
Weighted KNN 0.6910 0.7340 07090  0.6480  0.6771 0.7613 0.6955
Boosted Trees 0.8240* 0.8190 0.8208  0.8290  0.8249  0.9070 0.8232
Bagged Trees 0.8195 0.8490 0.8395 07900 08140  0.9031 0.8245
Ensemble Subspace Discriminant 0.7980 0.8720 0.8498 0.7240 0.7819 0.8701 0.8109
Subspace KNN 0.7855 0.8150 0.8046  0.7620 07827  0.8637 0.7925
RUS Boosted Trees 0.8015 0.8410 08274 07620  0.7933 0.8313 0.8080
Narrow Neural 0.7410 0.7390 07400 07430  0.7415 0.7711 0.7408
Network
Medi 1
edium Neura 0.7730 0.7080 07416  0.8380 07869  0.8210 0.7651
Neural Network
Wide Neural Network  0.7515 0.7700 07612 0.7330 07468  0.8167 0.7539
Network -
Bilayer Neural
0.7260 0.8140 07743 0.6380  0.6996  0.7658 0.7381
Network
Tri-layered Neural 0.7635 0.7370 07502 0.7900  0.7696  0.8028 0.7602
Network
SVM Kernel 0.7180 0.7790 07483 0.6570  0.6997  0.8037 0.7256
Kernel isti i
eme Logls“]z ;flressm 0.6760 0.7140 0.6905 06380 06332  0.7709 0.6796

* indicates trained model(s) with the top 3 performance.

Table 4 Feature importance rankings from four selection algorithms (MRMR, %2, ANOVA, Kruskal-Wallis) for all 23 predictors

2

No. MRMR X ANOVA Kruskal Wallis
1 time 0.3259 time 201.8875 time 225.3463 time 200.6717
2 race 0.1283 cd420 58.5601 cd420 69.744 cd420 73.0819
3 hemo 0.0187 karnof 20.4128 karnof 10.3323 cd40 21.3650
4 cd40 0.0186 cd40 18.9532 cd40 18.1431 karnof 20.9315
5 drugs 0.0185 730 16.3283 730 16.5460 z30 16.3105
6 strat 0.0105 str2 15.7498 str2 15.9491 str2 15.7326
7 treat 0.0104 preanti 14.0453 strat 13.4058 preanti 14.3845
8 symptom 0.0059 strat 13.8332 preanti 10.1935 strat 12.9096
9 cd420 0.0052 treat 8.8138 treat 8.8675 treat 8.8046
10 karnof 0.0050 trt 6.3411 drugs 6.3282 drugs 6.3066
11 age 0.0019 drugs 6.3130 offtrt 4.9914 offtrt 4.9808
12 offtrt 0.0012 offtrt 4.9857 cd80 4.6436 trt 4.5468
13 preanti 0.0008 symptom 4.3718 trt 4.4348 symptom 4.3676
14 oprior 0.0007 wtkg 2.6088 symptom 4.3744 cd80 3.6126
15 z30 0.0006 cd80 1.8004 age 2.1225 hemo 1.6455
16 str2 0.0004 hemo 1.6469 hemo 1.6446 age 1.3311
17 gender 0.0004 oprior 1.1714 oprior 1.1695 oprior 1.1705
18 homo 0 race 0.6639 cd820 0.8749 race 0.6634
19 cd80 0 gender 0.6298 race 0.6627 cd820 0.6364
20 wtkg 0 age 0.2666 gender 0.6287 gender 0.6293
21 cd820 0 cd820 0.1752 wtkg 0.1977 wtkg 0.1980
22 trt 0 homo 0.0696 homo 0.0695 homo 0.0696
23 zprior 0 zprior 0 zprior 0 zprior 0

10
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4.3 Reducing the Number of Predictors Through
Feature Selection Methods
To identify the minimum set of predictors
required for accurate survival prediction, we applied
four feature selection algorithms Minimum Redundancy

MRMR, %°, ANOVA, and the Kruskal-Wallis test to
rank all 23 predictors by their prognostic importance.

4.3.1 Consensus Findings Across Feature Selection
Methods:

Table 4 reveals strong consensus across the
four algorithms regarding the most important
predictors. All four algorithms unanimously identified
time (days to event or censoring) as the most important
predictor, consistently ranking it first. This confirms
time as the critical factor in survival prediction. Beyond
this unanimous first-place ranking, the algorithms
showed substantial convergence on the top-ranked
predictors.

For the second most important predictor, three

algorithms (XQ, ANOVA, Kruskal-Wallis) ranked
CD4 count at 96 = 5 weeks (cd420) second, while
MRMR placed it fourth, as detailed in Table 4.
Similarly, Karnofsky performance score (karnof)
appeared in the top four across all algorithms. Table 4

shows that X* and ANOVA shared a common third
feature, karnof, whereas MRMR's third feature was
hemo (hemophilia), and Kruskal-Wallis identified
¢d40 (baseline CD4). The fourth most important feature

for MRMR, Xz, and ANOVA was cd40 (baseline CD4
count), while Kruskal-Wallis identified karnof.
According to Table 4, the six most consistently
highly ranked predictors across methods were: (1)
time, (2) ¢d420 (CD4 at 96 weeks), (3) karnof
(Karnofsky score), (4) cd40 (baseline CD4), (5) z30
(ZDV use 30 days pre-enrollment), and (6) str2

(treatment stratification indicator). Notably, both x
and ANOVA demonstrated the highest concordance,
identifying identical top six predictors in the same

Model 11 (Linear SVM)

] 88.0%

True Class

1 82.0%

0

1

order, as shown in Table 4. MRMR rankings diverged
slightly by prioritizing race and hemophilia status
higher than the other three methods. Kruskal-Wallis

ranks closely aligned with % and ANOVA for the top
predictors. As illustrated in Table 4, the value of the
last predictor was zero across all algorithms,
indicating negligible importance.

4.3.2 Sequential Feature Addition Analysis:

Table 5 presents four algorithms: MRMR, Xz,
ANOVA, and Kruskal-Wallis. This linear SVM model
was trained by adding each parameter in turn, using
predictors with 1 to 10 features. In each algorithm, the
predictor order differed, as outlined in Table 4. The
highest accuracy percentile was 85.0% in the fifth

feature selection, which included Xz, ANOVA, and
Kruskal-Wallis, and in the sixth feature selection,
which included ANOVA and Kruskal-Wallis. Compared
to the other algorithms, MRMR demonstrated lower
accuracy. ANOVA was determined to be the most
reliable algorithm due to its highest accuracy.
According to Table 4, the first six predictors in both

%* and ANOVA were identical.

4.4 Final Optimized Model Performance

The final Linear SVM model, trained using
only the six identified predictors (time, cd420, karnof,
cd40, z30, str2), achieved performance superior to the
complete 23-predictor model. Training Performance
(5-fold cross-validation): The 6-predictor model
achieved 85.0% accuracy during cross-validation
training (Figure 4), with specificity of 88.0%,
precision of 87.2%, recall of 82.0%, Fl-score of
84.5%, AUC of 86.9%, and overall average
performance of 85.6%. This represents a 2.75%
improvement over the 23-predictor Linear SVM
model's training accuracy (82.25%).

ELA112.0%

LR 18.0%

TPR FNR

Predicted Class
Figure 4 Training performance (5-fold cross-validation) of the optimized Linear SVM model using only 6 key predictors
(time, ¢d420, karnof, cd40, z30, str2)

11
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Table 5 presents the accuracy results of the Linear SVM model across each feature selection stage (1 to 10 predictors) for all

four algorithms (MRMR, X2, ANOVA, and Kruskal-Wallis)

Feature Selection MRMR X ANOVA Kruskal Wallis
1 74.6% 76.4% 68.9% 80.9%
2 81.7% 81.5% 81.5% 81.5%
3 81.7% 81.7% 81.7% 82.1%
4 81.6% 81.9% 81.9% 81.9%
5 81.6% 85.0% 85.0%%* 85.0%
6 82.7% 84.9% 85.0%* 85.0%
7 82.9% 84.5% 84.0% 84.4%
8 82.8% 83.9% 83.9% 83.8%
9 83.7% 83.8% 83.8% 83.8%
10 83.5% 83.9% 83.3% 83.3%

Model 11 (Linear SVM)

] 85.3% ELREA14.7%
2
©
(6]
[}
2
'._

1 C67419.0%

0 1 TPR FNR

Predicted Class
Figure 5 Testing performance of the optimized Linear SVM model using only 6 key predictors on the independent test
dataset (1,307 patients)

After inputting the test dataset, we previously
divided, the linear SVM model was trained with the
six key predictors, as illustrated in Figure 5. The
model achieved 83.15% accuracy (0.8315), with a
specificity of 0.8530 and a precision of 0.8464. Its
recall measure reached 0.8100, while the F1 score was
0.8278. The model maintained a substantial area under
the curve (AUC) of 0.8692, resulting in an overall
average performance rating of 0.8352.

When comparing the outcomes of the
optimized machine learning model in this study with
a parallel prior survey conducted in Ethiopia which
employed 10-fold cross-validation classification
despite the difference in the size of the training dataset
(our study used a much smaller dataset), it was notable
that both models yielded similar accuracy percentages
(84.20% in the Ethiopian study and 83.15% in our
study), using an identical number of predictors (six) in
the final model. Moreover, other key distinctions
between the two studies were also essential to
consider during the analysis. The attributes utilized in
both studies differed significantly due to distinct
healthcare circumstances and populations. The
research carried out in Ethiopia estimated the risk of
death within five years from the initiation of
antiretroviral therapy for HIV patients (Endebu et al.,

12

2025). In contrast, our study aimed to estimate the
time until death for HIV patients; therefore, it reported
different results.

Our linear SVM model achieved reasonably
high accuracy using only approximately a quarter of
the original attributes. Consequently, patients require
fewer diagnostic tests and could avoid unnecessary
medical assessments, reducing healthcare expenses
and the time needed. It also minimized unnecessary
hospital stays, treatments, and emergency visits.
Therefore, the model supports end-of-life planning for
patients and their families. Beyond patient care, the
finalized machine learning model also facilitated
decision-making and management processes in
hospitals.

As shown in Table 6, the optimized 6-predictor
model achieved comparable training performance
(85.00%) and superior testing performance (83.15%
vs 82.25%) compared to the full 23-predictor model,
while requiring only 26% of the original clinical
parameters. This 74% reduction in required predictors
substantially decreases diagnostic burden, data
collection costs, and model complexity without
sacrificing and indeed slightly improving predictive
accuracy (A improvement of +0.90%).
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Table 6 Performance Comparison Summary

Model Configuration Training Accuracy

Testing Accuracy

A (Generalization) Number of Predictors

Full 23-predictor Linear SVM 85.00% 82.25% —2.75% 23
Optimized 6-predictor Linear SVM 85.00% 83.15% —1.85% 6
Improvement 0% +0.90% +0.90% —74% reduction

5. Discussion

This study developed and validated machine
learning models to predict survival time in AIDS
patients, with a primary focus on identifying the
minimum set of clinical predictors required to
maintain high prognostic accuracy. Our findings
demonstrate that accurate survival prediction can be
achieved wusing only six clinical parameters
representing a 74% reduction from the original 23
predictors while maintaining or even slightly
improving predictive performance compared to the
complete predictor set.

5.1 Summary and Interpretation of Main Findings
5.1.1 Superior Performance of Reduced Predictor Model
The most significant finding of this study is
that the optimized 6-predictor Linear SVM model
achieved superior testing performance (83.15% accuracy)
compared to the 23-predictor model (82.25% accuracy)
while requiring substantially fewer clinical inputs.
This counterintuitive result that fewer predictors yield
better performance can be attributed to three factors:
First, reduced overfitting: Models with fewer
parameters have less capacity to memorize patterns in
the training data, forcing them to learn more generalizable
relationships. Our results clearly demonstrated this
principle: ensemble models with high training

accuracy (87—88%) exhibited substantial performance

degradation on the test data (80—82%), whereas the
streamlined Linear SVM with moderate training
accuracy (85%) maintained consistent performance
on unseen data (83.15%). The minimal performance

gap (A =—1.85%) indicates excellent generalization.
Second, feature selection identified truly
informative predictors: The convergence of four

independent feature selection algorithms (MRMR, x,
ANOVA, Kruskal-Wallis) on the same six predictors
provides strong evidence that these variables capture
the most prognostically relevant information. The
unanimous identification of "time" as the most
important predictor, followed by consistent ranking of
CD4 counts and Karnofsky score, suggests these
parameters reflect fundamental biological and clinical
aspects of disease progression.

Third, removal of noise and redundancy: The
original 23-predictor set likely contained correlated
variables and parameters with minimal independent
prognostic value. By retaining only the six most
informative predictors, we eliminated noise that could
obscure meaningful patterns, leading to a more robust
and interpretable model.

5.1.2 Clinical Significance of the Six Key Predictors

The six predictors identified time, CD4 count

at 96 weeks (cd420), Karnofsky performance score
(karnof), baseline CD4 count (cd40), ZDV use 30
days pre-enrollment (z30), and treatment stratification
(str2) represent a clinically coherent and biologically
plausible prognostic signature:

e Time to event or censoring emerged as the
most crucial predictor across all algorithms,
reflecting the fundamental relationship
between observation duration and survival
outcomes in time-to-event analysis. This
finding aligns with standard survival
analysis principles, where longer event-free
time indicates better prognosis.

e CD4 counts (both baseline and at 96 weeks)
represent immune function status and
trajectory. CD4 count is the primary clinical
marker of HIV disease progression, with
values below 200 cells/mm? defining AIDS
diagnosis. The inclusion of both baseline and
follow-up CD4 counts allows the model to
assess not just initial immune status but also

immunological response to treatment,
capturing disease trajectory rather than static
status.

e Karnofsky performance score measures
functional capacity and overall health status.
This patient-reported outcome reflects the
real-world impact of disease on daily
functioning and has been consistently
associated with survival across many
diseases, including AIDS. Its prominence in
our model confirms that functional status
provides prognostic information beyond
laboratory parameters.
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e ZDV (zidovudine) uses 30 days pre-
enrollment represents treatment history and
may serve as a proxy for disease duration,
previous treatment exposure, and potentially
treatment adherence. Patients with recent
ZDV use may differ systematically from
treatment-naive patients in ways that affect
prognosis.

e Treatment stratification indicator likely
captures clinical categorization based on
disease severity or risk factors at enrollment,
incorporating the clinical judgment used to
stratify patients in the original trial.

Notably absent from the optimal predictor set
are demographic variables (age, gender, race),
behavioral factors (homosexual activity, IV drug use),
and specific laboratory values (CD8 counts, weight),
suggesting these contribute minimal independent
prognostic information beyond the six selected
predictors. This finding has practical implications:
clinicians could make informed prognostic
assessments that focus on immune function (CD4),
functional status (Karnofsky), treatment history, and
observation time, without requiring comprehensive
demographic and behavioral histories.

5.1.3 Comparison of Model Approaches and
Generalization Patterns
Our systematic evaluation of 34 models
revealed important patterns regarding model
complexity and generalization. Ensemble methods
(Boosted Trees, Bagged Trees, RUSBoosted Trees)

achieved the highest training accuracy (87—88%) but
showed substantial overfitting, with testing accuracy

dropping 5—7 percentage points. This pattern suggests
that ensemble approaches, despite their theoretical
advantages in reducing variance and bias, may be
prone to overfitting in datasets of this size (832
training cases).

In contrast, simpler models, such as Linear SVM,
demonstrated more consistent performance across
training and testing phases. Linear SVM's strong
generalization likely stems from its geometric
approach to classification, which seeks an optimal
separating hyperplane rather than memorizing
complex decision boundaries. This finding suggests
that for medical prediction tasks with moderate
sample sizes, simpler models with strong
regularization may be preferable to complex ensemble
methods, prioritizing generalization over training
accuracy.

The identification of Linear SVM as the
optimal model also has practical advantages: SVMs
are computationally efficient, have well-understood
theoretical properties, and produce deterministic
results (unlike some ensemble methods with
stochastic components). These characteristics support
reproducibility and clinical implementation.

5.2 Comparison to Previous AIDS Survival
Prediction Studies

Our findings align with and extend previous
research on machine learning for AIDS patient
outcomes. Endebu et al. (2025) recently developed a
machine learning model to predict loss to follow-up in
HIV care in Ethiopia, achieving 84.20% accuracy
with six predictors using 10-fold cross-validation. The
convergence on six optimal predictors across two
independent studies in different populations (U.S.
clinical trial vs. Ethiopian routine care) and with
different outcomes (survival time vs. loss to follow-
up) provides strong external validation for the
principle that HIV/AIDS outcomes can be accurately
predicted using a small set of key clinical parameters.

However, significant differences exist between
studies. Endebu et al. (2025) focused on predicting
loss to follow-up within 5 years of ART initiation in a
resource-limited setting, emphasizing healthcare
engagement rather than mortality. Their predictor set
likely included different variables relevant to
treatment adherence and healthcare access. Our study
addresses survival time prediction using data from a
controlled clinical trial with standardized follow-up
and comprehensive data collection. Despite these
differences, both studies demonstrate that feature
selection can identify minimal predictor sets without
sacrificing accuracy, supporting the generalizability
of this methodological approach across HIV/AIDS
prediction tasks.

Shi et al. (2022) developed machine learning
models to predict mortality in HIV patients with
Talaromycosis, a specific opportunistic infection,
using detailed clinical data. While their focus on
disease-specific mortality in HIV patients relates to
our work, their models required extensive clinical
parameters specific to fungal infection diagnosis and
treatment. Our broader focus on all-cause mortality in
AIDS patients and successful reduction to six general
clinical predictors represents a more generalizable
approach applicable across diverse clinical settings,
including resource-constrained environments where
comprehensive diagnostic testing may be unavailable.
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Previous studies applying machine learning to
HIV have primarily focused on infection risk
prediction (May et al., 2024; Volk et al., 2024) or
diagnosis support rather than prognostic modeling for
patients already diagnosed with AIDS. Our study fills
a significant gap by demonstrating that survival
prediction in AIDS patients can be achieved with high
accuracy using a minimal, clinically obtainable
predictor set.

5.3 Clinical Implications and Practical Applications
5.3.1 Resource Optimization in Clinical Settings

The 74% reduction in required predictors from
23 to 6 has substantial practical implications for clinical
implementation, particularly in resource-constrained
settings where comprehensive diagnostic testing may
be limited by cost, availability, or infrastructure. Our
findings suggest that clinicians could make informed
prognostic assessments using only:

¢ Time since diagnosis or treatment initiation

(readily available)
e CD4 counts at baseline and follow-up
(standard HIV monitoring)

e Karnofsky performance

clinical assessment)

e Basic treatment history (available from

medical records)

e Treatment stratification category (clinical

judgment)

This streamlined approach could enable
prognostic assessment in settings lacking access to
comprehensive laboratory panels, specialized testing,
or detailed patient histories. The reduction in required
data also decreases data collection burden, potentially
improving data completeness and quality while
reducing costs.

score  (simple

5.3.2 Treatment Planning and Resource Allocation

Accurate survival prediction using minimal
clinical data could inform several clinical decisions:

Treatment intensification: Patients predicted to
have poor survival outcomes might benefit from more
aggressive treatment regimens, closer monitoring, or
earlier referral to specialized care.

Clinical trial enrollment. Prognostic models
could help identify appropriate candidates for clinical
trials testing new interventions, ensuring trials enroll
patients most likely to benefit or those at the highest
risk.

Palliative care planning: For patients with
poor predicted outcomes, early integration of

palliative care services could improve quality of life
and align care with patient preferences.

Healthcare resource allocation: In resource-
limited settings, prognostic tools could help prioritize
intensive interventions for patients most likely to
benefit, optimizing population-level health outcomes.

However, we emphasize that our model
provides population-level probability estimates and
should inform not replace individualized clinical
judgment. Prognostic predictions must be interpreted
in the context of each patient's unique circumstances,
preferences, and values.

5.3.3 Model Interpretability and Clinical Acceptance

An essential advantage of our 6-predictor
Linear SVM model is its interpretability relative to
complex ensemble methods or deep learning
approaches. With only six inputs and a linear decision
boundary, clinicians can understand which factors
drive predictions and how changes in clinical
parameters might affect prognosis. This transparency
is crucial for clinical acceptance and trust, particularly
in high-stakes medical decision-making.

The identified predictors also align with
clinical understanding of AIDS progression: immune
function (CD4 counts) and functional status
(Karnofsky score) are already central to clinical
assessment. The model thus formalizes and quantifies
relationships that clinicians recognize intuitively,
potentially increasing confidence in its predictions.

5.4 Study Limitations and Considerations
Several limitations warrant consideration when
interpreting our findings:

5.4.1 Data Source and Generalizability

First, our study utilized data from a single
clinical trial (ACTG 175) conducted in the 1990s.
While this dataset provided high-quality, standardized
data with complete follow-up, several factors may
limit generalizability:

Temporal context: The data were collected
during an earlier era of antiretroviral therapy, before
the advent of highly active antiretroviral therapy
(HAART) and modern treatment regimen. Treatment
options, prognosis, and survival patterns have
changed substantially since the 1990s. Our model's
performance with contemporary patients receiving
current-generation antiretrovirals remains unknown.

Population  characteristics:  Clinical trial
participants may differ systematically from general
AIDS patient populations. Trial enrollment criteria
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(CD4 counts 200—500 cells/mm?) excluded patients
with very advanced or early-stage disease, potentially
limiting applicability to the full spectrum of AIDS
patients.

Geographic and demographic scope: The trial
was conducted in the United States with specific
demographic characteristics. Model performance in
other geographic regions, healthcare systems, or
populations with different demographic
compositions, comorbidity patterns, or healthcare
access remains uncertain.

5.4.2 Methodological Considerations

Class imbalance handling: We employed
random undersampling to address class imbalance,
discarding 1,202 survivor cases to balance the training
set. While this approach prevented majority class bias
and improved computational efficiency, it sacrificed
potentially informative data. Alternative methods,
such as SMOTE or class weighting, might yield
different results, though we chose undersampling to
avoid introducing synthetic data artifacts.

Feature selection method dependence: While
four feature selection algorithms converged on similar
predictors, different selection methods or criteria
might identify alternative predictor sets. Our choice of
ANOVA as the primary algorithm was based on
concordance with other methods and performance,
but this represents one of several defensible choices.

Single train-test split. We employed a single
80:20 train-test split rather than multiple splits or
nested cross-validation. While our testing set was
substantial (1,307 patients) and independent,
performance estimates might vary with different
random splits. However, the consistent performance
across 5-fold cross-validation training suggests results
are reasonably stable.

Hyperparameter optimization: We relied on
MATLAB's automated hyperparameter optimization
with default settings. More extensive hyperparameter
search or different optimization strategies might yield
improved performance, though likely with
diminishing returns given already-high accuracy.

5.4.3 Clinical Validation

Critically, our model has not been validated in
prospective clinical use. Retrospective accuracy does
not guarantee real-world utility or clinical impact.
Prospective validation in contemporary AIDS patient
cohorts, ideally across multiple sites and populations,
is essential before clinical implementation. Such
validation should assess not only predictive accuracy

but also clinical utility, implementation feasibility,
and impact on patient outcomes and healthcare
delivery.

5.4.4 Missing Predictors and Data

Our analysis was constrained to the 23
predictors available in the ACTG 175 dataset.
Contemporary clinical practice incorporates additional
parameters that may improve prediction: viral load (not
widely measured in the 1990s), comorbidity data,
specific history of opportunistic infections, adherence
measures, and social determinants of health. The
absence of these variables represents both a limitation
(potentially missing significant predictors) and a
strength (demonstrating that useful predictions can be
made with basic clinical data).

5.4.5 Model Simplicity Trade-offs

While our 6-predictor Linear SVM model
offers advantages in simplicity and interpretability,
more complex models (particularly deep learning
approaches) might capture nonlinear interactions and
complex patterns we did not assess. However, such
complexity would sacrifice interpretability and likely
require much larger training datasets than available in
this study. Our choice prioritizes generalizability and
clinical interpretability over potentially marginal
gains in accuracy.

5.5 Future Research Directions
Several avenues for future research could
address current limitations and extend this work:

5.5.1 Prospective Validation and Implementation Studies
The most critical next step is prospective
validation in contemporary AIDS patient cohorts
receiving modern antiretroviral therapy. Such
validation should:
o Assess model performance with current-era
treatment regimens

e Evaluate performance across diverse
geographic, demographic, and healthcare
settings

e Test clinical utility and impact on patient
outcomes

o Identify any need for model recalibration or
updating

Implementation research could assess the
feasibility, acceptability, and impact of integrating
this prognostic tool into clinical workflows, electronic
health records, or clinical decision support systems.
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5.5.2 Model Enhancement and Extension

Future work could extend our approach by:

¢ Incorporating additional predictors available
in modern clinical practice (viral load,
resistance testing, comorbidities, social
determinants)

¢ Developing time-varying models that update
predictions based on changing clinical status

o Creating risk stratification categories (low/
moderate/high risk) rather than continuous
probability estimates

e Exploring nonlinear models or deep learning
approaches while maintaining interpretability

e Developing ensemble approaches that
combine multiple simple models

5.5.3 Mechanism Investigation
Our finding that 6 predictors outperform 23
suggests the presence of redundant or noisy variables.
Future research could be conducted:
e Correlation structures among predictors
¢ Identification of which predictors provide
redundant information
e Understanding why certain intuitively
important variables (age, gender) provide
minimal independent prognostic value
¢ Biological or clinical mechanisms underlying
the prognostic importance of the six selected
predictors

5.5.4 Comparative Effectiveness Research

Studies comparing ML-based prognostic
predictions to existing clinical assessment methods
(e.g., physician judgment, simple scoring systems)
would establish the added value of our approach and
identify optimal strategies for combining ML
predictions with clinical expertise.

Health Economics Analysis

A cost-effectiveness analysis could quantify
the economic value of reduced diagnostic
requirements by comparing healthcare costs and
outcomes between comprehensive assessment and our
streamlined 6-predictor approach. Such analysis
would inform policy decisions about resource
allocation in different healthcare contexts.

Extension to Related Conditions

The methodological approach developed here
systematic feature selection to identify minimal
predictor sets could be applied to prognostic
prediction in other chronic diseases, opportunistic

infections in HIV, or other AIDS-related outcomes
(treatment failure, loss to follow-up, quality of life).
Comparative studies across conditions could identify
common principles for effective medical prediction
modeling.

6. Conclusion

This study demonstrates that accurate survival
prediction in AIDS patients can be achieved using
only six clinical predictors (time, CD4 counts at
baseline and 96 weeks, Karnofsky performance score,
ZDV wuse history, and treatment stratification),
representing a 74% reduction from the original 23-
predictor set. Notably, this streamlined 6-predictor
Linear SVM model achieved superior testing
performance (83.15% accuracy) compared to the
complete 23-predictor model (82.25% accuracy),
challenging the assumption that more data necessarily
improves prediction. These findings have significant
practical implications for resource-constrained
clinical settings where comprehensive diagnostic
testing may be unavailable or cost-prohibitive. By
demonstrating that survival prediction requires only
basic immune function markers (CD4 counts),
functional status assessment (Karnofsky score), and
treatment history all readily obtainable in routine
clinical practice this work provides a foundation for
developing practical prognostic tools that balance
accuracy with feasibility. The methodological
contribution extends beyond AIDS research:
systematic feature selection successfully identified a
minimal predictor set that outperformed the whole
feature space, illustrating the value of parsimony in
medical prediction modeling. This approach of
prioritizing generalization over training accuracy
through model simplification may inform predictive
modeling across diverse medical applications.

However, important limitations, particularly
the use of historical trial data from the 1990s and the
absence of prospective validation in contemporary
patient populations, necessitate cautious
interpretation. Future research validating this
approach with modern antiretroviral regimens and
diverse patient populations will be essential to
translate these findings into clinical practice and
realize the potential of streamlined, accurate AIDS
survival prediction for improving patient care and
resource allocation.
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7. Abbreviations

Abbreviation Full Form

ACTG AIDS Clinical Trials Group

Al Artificial Intelligence

AIDS Acquired Immunodeficiency
Syndrome

ANOVA Analysis of Variance

ART Antiretroviral Therapy

AUC Area Under the Curve

CDh4 Cluster of Differentiation 4 (T-
lymphocyte cells)

CD8 Cluster of Differentiation 8 (T-
lymphocyte cells)

12 Chi-Square

ECG Electrocardiography

FN False Negative

FP False Positive

HAART Highly Active Antiretroviral
Therapy

HIV Human Immunodeficiency Virus

HIV-1 Human Immunodeficiency Virus
Type 1

HIV-2 Human Immunodeficiency Virus
Type 2

HMIS Health Management Information
System

v Intravenous

KNN K-Nearest Neighbors

MATLAB Matrix Laboratory (software)

ML Machine Learning

MRI Magnetic Resonance Imaging

MRMR Minimum Redundancy Maximum
Relevance

ODbL Open Database License

PCR Polymerase Chain Reaction

PCP Pneumocystis jirovecii
Pneumonia

PrEP Pre-Exposure Prophylaxis

RNA Ribonucleic Acid

ROC Receiver Operating Characteristic

RUS Random Under-Sampling

SIV Simian Immunodeficiency Virus

SMOTE Synthetic Minority Over-sampling
Technique

STI Sexually Transmitted Infection

SVM Support Vector Machine

TN True Negative

TP True Positive

ZDV Zidovudine (also known as AZT)
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