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Abstract 
Numerous individuals deal with incurable illnesses, such as acquired immunodeficiency syndrome (AIDS), daily. One 

of the objectives of this study is to assist AIDS patients and healthcare professionals by creating selective machine-learning 

models in MATLAB R2024b, which could reduce the medical costs as well as the time required to examine the patients, to 

aid in personalizing patient treatment, and optimize healthcare management through feature selection techniques by lessening 

the number of attributes used in the operational model. The dataset named AIDS Clinical Trials Group Study 175 analyzed, is 

obtained from open-source Kaggle and consists of 23 predictors, including time, treatment indicator, age, weight, hemophilia, 

homosexual activity, history of IV drug use, Karnofsky score, History of non-ZDV antiretroviral therapy, ZDV history 30 days 

before dataset collecting period, ZDV history, antiretroviral therapy history, race, gender, symptom indicator, treatment 

indicator, treatment of off-treatment before 96 ± 5 weeks, CD4 count, and CD8 count. It was randomly split into a training and 

testing dataset in an 80:20 ratio to train 34 machine learning models and identify the best-performing model. Feature selection 

methods include Minimum Relevance and Maximum Relevance, Minimum Redundancy, Chi Square (2), ANOVA, and 

Kruskal-Wallis to highlight the importance of each clinical feature. Here, the Boosted Tree (Tree) achieved the highest 

accuracy of 87.86%. Each model was then tested on the test dataset, and the results were compared with those from the previous 

procedure. The models also underwent feature-selection analysis to determine the significance of each predictor and the 

minimum number of predictors required to function efficiently. Finally, we conclude that the model with the best performance 

is the Linear SVM (SVM), with 85.0% accuracy and 5 or 6 predictors, including (1) time, (2) cd420, (3) karnof, (4) cd40, (5) 

z30, and (6) str2.  
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1.  Introduction 

Acquired immunodeficiency syndrome (AIDS) 

represents the most advanced stage of human 

immunodeficiency virus (HIV) infection, characterized 

by severe immunosuppression and increased 

susceptibility to opportunistic infections (Chanthara et 

al., 2025; Van Heuvel et al., 2022). HIV transmission 

occurs through sexual contact, exposure to 

contaminated blood or body fluids via needle 

sharing, and vertical transmission during pregnancy, 

delivery, or breastfeeding (Sahoo et al., 2017). As a 

member of the family Retroviridae, genus Lentivirus, 

HIV was first identified in 1983 (Gallo & Montagnier, 

1987). Two distinct viral subtypes exist: HIV-1 and 

HIV-2, which originated from separate zoonotic 

transmissions of simian immunodeficiency virus 

(SIV) (Motomura et al., 2008). Despite structural 

similarities in their genetic material, these subtypes 

https://doi.org/10.59796/jcst.V15N4.2025.1
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exhibit substantial molecular divergence, sharing only 

approximately 60% amino acid sequence identity and 

48% nucleotide sequence identity (Motomura et al., 

2008). 

The global HIV/AIDS epidemic continues to 

pose a critical public health challenge. As of 2022, 

approximately 40.4 million people were living with 

HIV worldwide (Wu et al., 2024), with no definitive 

cure currently available. In 2023 alone, HIV-related 

illnesses claimed 630,000 lives, while 1.3 million new 

infections were reported (UNAIDS, 2024). Although 

global prevention efforts have achieved substantial 

progress, new infection rates have declined by 60% 

since their 1995 peak (Payagala & Pozniak, 2024) the 

persistent disease burden necessitates improved 

prognostic tools and treatment optimization strategies. 

Clinical management of HIV/AIDS relies 

heavily on CD4 and T-lymphocyte monitoring, as 

these immune cells are the primary targets of HIV 

infection. Normal CD4 counts range from 500 to 

1,500 cells/mm³; a decline below 200 cells/mm³ 

indicates progression to AIDS and signals critical 

immunodeficiency (Battistini et al., 2023). While 

antiretroviral therapy (ART) has transformed HIV 

from a fatal diagnosis to a manageable chronic 

condition, significant treatment gaps persist. 

Although more than 26 million people living with 

HIV receive ART, over 12 million remain without 

access to life-saving treatment due to inadequate 

healthcare infrastructure and limited harm reduction 

programs in many regions (Kumah et al., 2023). These 

disparities in access to care, combined with the 

complexity of individualized treatment planning, 

underscore the need for advanced predictive tools  

to optimize resource allocation and personalize 

patient management. Machine learning approaches 

have shown promise in HIV prevention research, 

supporting diagnostic accuracy and informing clinical 

decision-making (Marcus et al., 2020). 

Recent advances in artificial intelligence have 

demonstrated the utility of machine learning in 

HIV/AIDS care. For instance, predictive models have 

been deployed to identify high-risk populations for 

targeted testing interventions and to optimize 

prevention strategies through geospatial analysis 

(Bukachi et al., 2024). Similarly, AI-assisted spatial 

mapping has enabled identification of vulnerable 

communities requiring enhanced public health 

interventions (Tiribelli et al., 2024). Machine 

learning-based risk assessment tools have also been 

developed to predict HIV infection risk using large-

scale clinical data. One notable example analyzed 

over one million patient visits to sexual health centers 

between 2008 and 2022, demonstrating the feasibility 

of personalized risk stratification to guide prevention 

efforts (Latt et al., 2024). 

Despite these advances, machine learning 

applications in HIV/AIDS research have primarily 

focused on infection risk prediction and diagnostic 

support rather than prognostic modeling for patients 

already diagnosed with AIDS. Several studies have 

explored mortality prediction for specific HIV-

associated opportunistic infections. For example, Shi 

et al. (2022) developed a machine learning model to 

predict mortality in HIV patients with Talaromycosis, 

a severe fungal infection caused by Talaromyces 

marneffei. While valuable, such disease-specific 

models have limited generalizability to the broader 

AIDS patient population and typically require 

extensive clinical parameters, potentially limiting 

their practical utility in resource-constrained settings. 

A critical gap exists in the literature regarding 

machine learning models specifically designed  
to predict survival outcomes among AIDS patients 

using streamlined clinical features. This research 

addresses this gap by developing and validating 

machine learning models that predict survival 

duration in AIDS patients using a substantially 

reduced set of clinical predictors. Through systematic 

feature selection analysis, we identify the minimum 

number of clinical parameters required to maintain 

high predictive accuracy, thereby reducing diagnostic 

burden, lowering healthcare costs, and facilitating 

implementation in resource-limited settings. 

Furthermore, this study provides comprehensive 

insights into the relative importance of various 

HIV/AIDS-related clinical factors in survival 

prediction, establishing a methodological framework 

for future predictive analytics research in HIV/AIDS 

care. By demonstrating that accurate survival 

prediction can be achieved with fewer clinical inputs, 

our findings have the potential to improve treatment 

planning, optimize healthcare resource allocation, and 

enhance patient care outcomes, particularly in settings 

where comprehensive diagnostic testing may be 

unavailable or prohibitively expensive. 

 

2.  Objectives 

1. To develop and validate a machine-learning 

model capable of predicting survival probability and 

personalized survival time for AIDS patients, as well 

as facilitating early disease detection.  

2. To explore and gain in-depth knowledge 

about AIDS and HIV through algorithmic analysis of 
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patient data, which may assist in future treatment 

strategies.  

3. To provide fundamental tools and knowledge 

related to machine learning for future clinical research 

on AIDS and HIV.  

4. To develop an interpretable AI-based 

diagnostic tool with high accuracy for AIDS patients, 

based on everyone’s profile. 

 

3.  Materials and Methods 

This section describes the procedures and 

materials used in this study, including the predictors 

and labels in the dataset, the data source, the data 

handling process, and the software used. Furthermore, 

the procedures will be demonstrated as a flowchart in 

Figure 1 below. 

 

3.1 Dataset and Study Population 

This study utilized data from the AIDS Clinical 

Trials Group Study 175 (ACTG 175), a randomized, 

double-blind clinical trial comparing nucleoside 

monotherapy with combination therapy in HIV-

infected adults (Hammer et al., 1996). The dataset, 

accessed through the Kaggle open-source platform  
in February 2025 under the Open Database License 

(ODbL), contains clinical and demographic information 

from 2,139 patients. All participants had CD4 cell 

counts between 200 and 500 cells/mm³ at enrollment. 

The dataset comprises 23 predictor variables and one 

binary outcome variable (survival status at study 

conclusion).

 
Figure 1 Flowchart representing the flow of data and procedures in the proposed system.  

The figure is modified from Pechprasarn et al. (2025) 
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The 23 predictor variables include: (1) time to 

study event or censoring (days), (2) age at enrollment 

(years), (3) weight (kg), (4) hemophilia diagnosis,  
(5) homosexual activity, (6) history of intravenous 

drug use, (7) Karnofsky performance score, (8) race, 

(9) gender, (10) antiretroviral therapy history prior to 

study, (11) symptomatic HIV indicator, (12) CD4 

count at 96 ± 5 weeks, (13) CD4 count at baseline,  
(14) CD8 count at 96 ± 5 weeks, (15) CD8 count  
at baseline, (16) treatment indicator for non-ZDV 

antiretroviral therapy, (17) ZDV use in the 30 days 

before study enrollment, (18) days of prior ZDV use, 

(19) ZDV use indicator, (20) stratification indicator, 

(21) treatment indicator, (22) treatment of off-

treatment status before 96 ± 5 weeks, and (23) days  
of prior non-ZDV antiretroviral use. Complete 

definitions are provided in Table 1. 

The outcome variable indicates patient survival 

status at study conclusion: 0 = alive (n = 1,618; 

75.6%) and 1 = deceased (n = 521; 24.4%). Although 

this dataset is publicly available and exempt from 

additional ethical review, all analyses were conducted 

in accordance with ethical principles for medical 

research involving human data. 

 

3.2 Data Preprocessing and Class Imbalance 

Management 

The substantial class imbalance in the original 

dataset (1,618 survivors vs. 521 deceased) posed  
a risk of model bias toward the majority class. Two 

primary approaches exist for addressing class 

imbalance: oversampling minority-class instances  
or undersampling majority-class instances. 

Oversampling techniques, such as Synthetic Minority 

Over-sampling Technique (SMOTE), generate 

synthetic minority-class samples but may introduce 

noise, increase the risk of overfitting, and perform 

poorly on high-dimensional data (Wongvorachan et 

al., 2023; Matharaarachchi et al., 2024).

 
Table 1 Predictors and their definition from the Kaggle AIDS Clinical Trials Group Study 175 Dataset 

Predictors Details 

time The number of days to failure or censoring. 

trt Treatment indicator. 0: ZDV only, 1= ZDV + ddl, 2=ZDV + zal, and 3= ddl only 

age Age in years. 

wtkg Weight in kilograms. 

hemo Hemophilia. 0 = No and 1 = Yes 

homo Homosexual activity. 0 = No and 1 = Yes 

drugs History of IV drug use. 0 = No and 1 = Yes 

karnof Karnofsky score on the scale of 1 to 100 

oprior 
Non-ZDV antiretroviral therapy was performed before the dataset collection period. 0 = NO 

and 1 = Yes 

z30 ZDV in the 30 days before the dataset collection period. 0 = NO and 1 = Yes 

zprior ZDV before the dataset collection period. 0 = NO and 1 = Yes 

preanti 
The number of days before the dataset collecting period, the patient was on antiretroviral 

therapy. 

race Race. 0 = White and 1 = Non-white 

gender Gender. 0 = Female and 1 = Male 

str2 Antiretroviral history. 0 = Naive and 1 = Exposed 

strat 
Antiretroviral stratification, 1=Antiretroviral naive, 2= >1 but ≤ 52 weeks of prior and 3= > 

52 weeks of prior 

symptom Symptomatic indicator. 0: Asymptomatic and 1: Symptomatic 

treat Treatment indicator. 0 = ZDV only and 1 = Others 

offtrt An indicator of an off-treatment period before 96 ± 5 weeks. 0 = No and 1 = Yes 

cd40 CD4 counts. 

cd420 CD4 counts at 20  5 weeks. 

cd80 CD8 counts. 

cd820 CD8 counts at 20  5 weeks. 

Label Details 

label Patient’s status. 0: Censoring and 1: Failure 

 



PECHPRASARN ET AL. 

JCST Vol. 16 No. 1, January-March 2026, Article 158 

5 

We employed random undersampling of the 

majority class for three reasons: (1) the majority class 

contained sufficient cases for robust model training 

after reduction, (2) undersampling preserves the 

original data distribution without introducing 

synthetic cases, and (3) reduced dataset size improved 

computational efficiency while maintaining statistical 

power. While undersampling discards potentially 

informative majority class instances, the remaining 

sample size (832 patients for training) was adequate 

for the modeling objectives. 

 

3.3 Training and Testing Dataset Partitioning 

The original 2,139 patient records were 

partitioned into training and testing subsets using an 

80:20 ratio, a standard practice in machine learning 

that balances model learning capacity with adequate 

validation sample size. The partition was 

implemented in two stages: 

First, to create a balanced training set, we 

randomly selected 416 cases from each outcome class 

(832 total: 416 survivors, 416 deceased) using random 

undersampling of the majority class. This balanced 

distribution prevents model bias toward the majority 

class during training. A fixed random seed (not 

specified in the original implementation) was used to 

ensure reproducibility. 

Second, the remaining 1,307 patient records 

(1,202 survivors, 105 deceased) constituted the 

independent testing dataset. Critically, the testing set 

intentionally preserved the original class distribution 

(approximately 92% survivors, 8% deceased) to 

reflect real-world population characteristics and 

provide a realistic evaluation of model performance in 

clinical settings. 

All preprocessing and partitioning were 

conducted before model training to prevent data 

leakage, ensuring that no information from the testing 

set influenced model development. 

 

3.4 Machine Learning Model Development and 

Training 

We trained and evaluated 34 classification 

models representing diverse algorithmic approaches 

to identify the optimal model for predicting AIDS 

patient survival. Models were implemented using the 

Classification Learner Toolbox in MATLAB R2024b, 

which provides built-in hyperparameter optimization 

capabilities. 

 

 

Model Selection and Categories: Models were 

selected from seven prominent algorithm families: 

• Decision Trees: Fine Tree, Medium Tree, 

Coarse Tree 

• Support Vector Machines (SVM): Linear, 

Quadratic, Cubic, Fine Gaussian, Medium 

Gaussian, Coarse Gaussian, Efficient Linear 

• Logistic Regression: Binary logistic 

regression and Efficient 

• Naive Bayes: Gaussian and Kernel variants 

• K-Nearest Neighbors (KNN): Fine, Medium, 

Coarse, Cosine, Cubic, Weighted 

• Ensemble Methods: Boosted Trees, Bagged 

Trees, RUSBoosted Trees 

• Subspace Discriminant, Subspace KNN 

• Neural Networks: Narrow, Medium, Wide, 

Bilayered, Trilayered configurations 

• Discriminant: Linear, Quadratic 

• Kernel: SVM, Logistic Regression 

Hyperparameter Optimization: Automated 

hyperparameter optimization was performed for each 

model using Bayesian optimization with the following 

settings: 

• Optimization objective: Minimize classification 

error 

• Maximum iterations: 30 per model 

• Cross-validation: 5-fold (described below) 

The hyperparameters optimized varied by 

algorithm but typically included regularization 

parameters, kernel functions, number of neighbors, 

tree depth, learning rates, and ensemble size, where 

applicable. 

Cross-Validation Strategy: All models were 

trained on the balanced training dataset (832 patients) 

using 5-fold cross-validation. This approach partitions 

the training data into five equal subsets, training each 

model five times on four subsets while validating on 

the remaining subset. The 5-fold configuration 

balances computational efficiency with reliable 

performance estimation and is standard practice for 

datasets of this size. Cross-validation performance 

metrics (Table 2) represent the average across all five 

folds. 

Model Performance Evaluation: Following 

training and cross-validation, all 34 models were 

evaluated on the independent testing dataset (1,307 

patients) to assess generalization performance. Model 

performance was quantified using five standard 

classification metrics, as shown in Equations (1) to 

(5). 
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Accuracy = 
TP + TN

TP + TN + FP + FN
   (1) 

Precision = 
TP

TP + FP
   (2) 

Recall = 
TP

TP + FN
    (3) 

Specificity = 
TN

TN + FP
   (4) 

F1 score = 2
Pr ecision × Recall

Precision + Recall
   (5) 

 

TP and TN are regarded as true positive cases 

and true negative cases, respectively, and FP and FN 

are regarded as false positive and false negative cases, 

respectively. 
Where TP = true positives (correctly predicted 

deceased), TN = true negatives (correctly predicted 

survivors), FP = false positives (survivors incorrectly 

predicted as deceased), and FN = false negatives 

(deceased incorrectly predicted as survivors). 

These metrics provide complementary 

perspectives on model performance: accuracy 

indicates overall correctness, precision reflects 

positive prediction reliability, recall measures 

sensitivity to the minority class (deceased patients), 

specificity indicates majority class performance, and 

F1-score balances precision and recall. For clinical 

applications, recall (identifying patients at risk of 

death) and specificity (avoiding false alarms) are 

particularly important for resource allocation and 

treatment planning. 

Model Selection Criteria: The optimal model 

was selected based on: (1) high testing accuracy, (2) 

minimal performance degradation between cross-

validation and testing (indicating good generalization), 

(3) balanced performance across all metrics, and (4) 

stability across the cross-validation folds. 

 

3.5 Feature Selection and Importance Analysis 

To identify the minimum set of clinical 

predictors necessary for accurate survival prediction, 

we conducted systematic feature selection analysis 

using four complementary statistical methods: Minimum 

Redundancy Maximum Relevance (MRMR), Chi-

Square (
2
), Analysis of Variance (ANOVA), and 

Kruskal-Wallis test. These methods were selected to 

capture different aspects of feature importance: 

MRMR identifies features with maximum relevance 

to the outcome and minimum redundancy with other 

features, 2 and ANOVA evaluate association strength 

using parametric approaches, and Kruskal-Wallis 

provides a non-parametric alternative suitable for 

non-normal distributions. 

Feature Importance Ranking: Each method 

independently ranked all 23 predictors according to 

their contribution to survival prediction, generating 

four separate importance rankings (Table 4). By 

comparing rankings across methods, we identified 

predictors consistently ranked as important, providing 

robust evidence of their prognostic value. 

Sequential Feature Addition Analysis: 

Following feature importance ranking, we employed 

a sequential forward selection approach to determine 

the minimum predictor set. Starting with the highest-

ranked feature, we iteratively added predictors one at 

a time according to their importance ranking. At each 

step, we retrained the best-performing model (Linear 

SVM, identified in Section 4.2) using only the 

selected features and evaluated performance on both 

training (via 5-fold cross-validation) and testing 

datasets. 

This sequential analysis generated a series of 

models using 1, 2, 3, ..., up to 10 predictors, allowing 

us to identify the point at which additional features 

provided minimal performance improvement. The 

optimal feature set was defined as the minimum 

number of predictors that achieved performance 

comparable to the complete 23-predictor model 

(within 2−3% accuracy). 

Consensus Feature Selection: To ensure 

robustness, we prioritized features consistently ranked 

highly across multiple selection methods. The final 

reduced predictor set was validated by: (1) achieving 

comparable or superior accuracy to the full model, (2) 

demonstrating consistent performance across cross-

validation folds, and (3) showing stable rankings 

across different feature selection algorithms. 

This comprehensive feature selection procedure 

serves two purposes: identifying the most prognostically 

important clinical factors and establishing a 

streamlined model suitable for resource-constrained 

clinical settings where comprehensive diagnostic 

testing may be impractical. 

 

3.6 Statistical Analysis and Software 

All data preprocessing, model training, cross-

validation, and feature selection were performed 

using MATLAB R2024b (MathWorks, Natick, MA, 

USA) with the Statistics and Machine Learning Toolbox 

and Classification Learner App. Performance metrics 

were calculated using standard confusion matrix-

based formulas. Model comparisons were based on 

point estimates of accuracy and other performance 

metrics, with full confusion matrices reported to 

enable comprehensive performance assessment. 
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4.  Results 

4.1 Model Performance Using Complete Predictor 

Set 

We trained and evaluated 34 machine learning 

models representing seven algorithm families using 

all 23 clinical and demographic predictors (Table 1). 

Training was conducted on the balanced dataset (832 

patients) using 5-fold cross-validation. Complete 

training performance results for all models are 

presented in Table 2. 

Three models achieved the highest cross-

validation accuracy: Boosted Trees (87.86%), RUS 

Boosted Trees (87.02%), and Bagged Trees (86.90%), 

with their confusion matrices shown in Figures 2a-c. 

These ensemble methods substantially outperformed 

single-classifier approaches, with the next-highest 

accuracy being 85.00% for Linear SVM. Among 

individual algorithm families, Support Vector 

Machines demonstrated the strongest and most 

consistent performance, with Linear, Quadratic, and 

Cubic SVM variants achieving accuracy between 

80−85%. 

Three models Linear Discriminant Analysis, 

Quadratic Discriminant Analysis, and Gaussian Naïve 

Bayes could not be trained successfully due to 

mathematical constraints arising from the data 

structure and distributional assumptions and are 

marked as failed in Table 

  

   

(a) (b) (c) 
Figure 2 Confusion matrices of the top 3 models with the highest accuracy, trained with 23 predictors (a) Boosted Trees 

(Ensemble), (b) RUS Boosted Trees (Ensemble), and (c) Bagged Trees (Ensemble) 

 

Table 2 Classification validation accuracy of models trained with 23 predictors using a 5-fold cross-validation method 

Model Details Accuracy Specificity Precision Recall 
F1 

Score 
AUC 

Average of 

Performance 

Metrics 

Tree 

Fine Tree  0.8389 0.8438 0.8422 0.8341 0.8382 0.8818 0.8398 

Medium Tree 0.8690 0.8702 0.8699 0.8678 0.8688 0.9115 0.8692 

Coarse Tree 0.8462 0.8293 0.8349 0.8630 0.8487 0.8542 0.8433* 

Discriminant 

Linear 

Discriminant 
- - - - - - - 

Quadratic 

Discriminant 
- - - - - - - 

Binary GLM 

Logistic 

Regression 

Binary GLM 

Logistic 

Regression 

0.8522 0.8967 0.8865 0.8077 0.8453 0.9051 0.8608 

Efficient 

Logistic 

Regression 

Efficient Logistic 

Regression 
0.8281 0.8606 0.8509 0.7957 0.8224 0.8943 0.8338 

Efficient 

Linear SVM 

Efficient Linear 

SVM 
0.8233 0.8654 0.8530 0.7813 0.8156 0.8956 0.8307 

Naïve Bayes 

Gaussian Naïve 

Bayes 
- - - - - - - 

Kernel Naïve 

Bayes 
0.8005 0.8510 0.8342 0.7500 0.7899 0.8658 0.8089 
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Table 2 Cont. 

Model Details Accuracy Specificity Precision Recall 
F1 

Score 
AUC 

Average of 

Performance 

Metrics 

SVM 

Linear SVM 0.8377 0.8870 0.8747 0.7885 0.8293 0.9120 0.8470* 

Quadratic SVM 0.8341 0.8510 0.8458 0.8173 0.8313 0.9119 0.8370 

Cubic SVM 0.8065 0.8221 0.8164 0.7909 0.8034 0.8839 0.8090 

Fine Gaussian 

SVM 
0.6058 0.3221 0.5675 0.8894 0.6929 0.7138 0.5962 

Medium 

Gaussian SVM 
0.8486 0.8702 0.8643 0.8269 0.8452 0.9159 0.8525 

Coarse Gaussian 

SVM 
0.8257 0.8966 0.8796 0.7548 0.8124 0.9035 0.8392* 

KNN 

Fine KNN 0.6851 0.6875 0.6860 0.6827 0.6843 0.6851 0.6853 

Medium KNN 0.7548 0.8389 0.8064 0.6707 0.7323 0.8143 0.7677 

Coarse KNN 0.7464 0.8510 0.8116 0.6418 0.7168 0.8255 0.7627 

Cosine KNN 0.7548 0.8365 0.8046 0.6731 0.7330 0.8197 0.7673 

Cubic KNN 0.7356 0.8173 0.7816 0.6538 0.7120 0.8021 0.7471 

Weighted KNN 0.7680 0.7981 0.7852 0.7380 0.7608 0.8214 0.7723 

Ensemble 

Boosted Trees 0.8786* 0.8702 0.8723 0.8870 0.8796 0.9390 0.8770 

Bagged Trees 0.8690* 0.8654 0.8663 0.8726 0.8695 0.9302 0.8683 

Subspace 

Discriminant 
0.8329 0.8990 0.8837 0.7668 0.8211 0.8942 0.8456 

Subspace KNN 0.7897 0.8029 0.7975 0.7764 0.7868 0.8709 0.7916 

RUS Boosted 

Trees 
0.8702* 0.8678 0.8684 0.8726 0.8705 0.9082 0.8697 

Neural 

Network 

Narrow Neural 

Network 
0.8209 0.8125 0.8156 0.8293 0.8224 0.8477 0.8196 

Medium Neural 

Network 
0.8065 0.8149 0.8117 0.7981 0.8048 0.8541 0.8078 

Wide Neural 

Network 
0.8077 0.8149 0.8122 0.8005 0.8063 0.8725 0.8088 

Bilayer Neural 

Network 
0.7993 0.8053 0.8029 0.7933 0.7981 0.8390 0.8002 

Tri-layered 

Neural Network 
0.8005 0.7957 0.7976 0.8053 0.8014 0.8354 0.7998 

Kernel 

SVM Kernel 0.7813 0.7957 0.7896 0.7668 0.7780 0.8638 0.7833 

Logistic 

Regression 

Kernel 

0.7849 0.7909 0.7883 0.7788 0.7836 0.8692 0.7857 

* indicates trained model(s) with the top 3 performance. 

 
Figure 3 Confusion matrix for Linear SVM evaluated on the independent test dataset (1,307 patients) using all 23 predictors 
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4.2 Model Generalization and Selection for 

Feature Selection Analysis 

All successfully trained models were evaluated 

on the independent testing dataset (1,307 patients) to 

assess generalization performance (Table 3). The 

testing phase revealed substantial performance 

degradation for several high-training-accuracy models, 

indicating overfitting. Most notably, the three top-

performing models during training showed marked 

accuracy reductions when tested on unseen data: 

Boosted Trees decreased from 87.86% to 82.40% (Δ = 

−5.46%), RUS Boosted Trees from 87.02% to 80.15% 

(Δ = −6.87%), and Bagged Trees from 86.90% to 

81.95% (Δ = −4.95%). 

In contrast, several models demonstrated 

superior generalization stability. Coarse Tree achieved 

the highest testing accuracy at 84.05%, while Linear 

SVM obtained 82.25% accuracy with minimal 

degradation from its training performance (85.00% 

training vs. 82.25% testing; Δ = −2.75%). Table 3 

presents complete performance metrics (accuracy, 

precision, recall, specificity, F1-score) for all models 

on the testing dataset. 

To select the optimal model for subsequent 

feature selection analysis, we prioritized generalization 

stability over raw training accuracy, as models that 

generalize well are more likely to perform reliably in 

clinical settings. Linear SVM demonstrated the most 

consistent performance across training and testing 

phases, with performance degradation of less than 3% 

across all metrics. The model achieved 82.25% 

accuracy, 87.40% specificity, 85.95% precision, 

77.10% recall, 81.29% F1-score, and 88.46% AUC on 

the testing dataset (Figure 3). The high specificity 

(87.40%) indicates a strong ability to correctly 

identify surviving patients, while moderate recall 

(77.10%) suggests some false negatives (deceased 

patients incorrectly predicted as survivors). Based on 

its balanced performance and excellent generalization, 

Linear SVM was selected for feature selection analysis. 

 
 

Table 3 Testing performance of models evaluated on independent test dataset (n=1,307) using all 23 predictors 

Model Details Accuracy Specificity Precision Recall 
F1 

Score 
AUC 

Average of 

Performance 

Metrics 

Tree 

Fine Tree  0.7680 0.7930 0.7821 0.7430 0.7621 0.7769 0.7715 

Medium Tree 0.7985 0.8350 0.8220 0.7620 0.7909 0.8145 0.8044 

Coarse Tree 0.8405* 0.7860 0.8070 0.8950 0.8487 0.8407 0.8321 

Discriminant 

Linear 

Discriminant 
- - - - - - - 

Quadratic 

Discriminant 
- - - - - - - 

Binary GLM 

Logistic 

Regression 

Binary GLM 

Logistic 

Regression 

0.8215 0.8530 0.8431 0.7900 0.8157 0.8766 0.8269 

Efficient 

Logistic 

Regression 

Efficient Logistic 

Regression 
0.7975 0.8710 0.8488 0.7240 0.7814 0.8683 0.8103 

Efficient 

Linear SVM 

Efficient Linear 

SVM 
0.7990 0.8650 0.8445 0.7330 0.7848 0.8792 0.8104 

Naïve Bayes 

Gaussian Naïve 

Bayes 
- - - - - - - 

Kernel Naïve 

Bayes 
0.7420 0.8360 0.7980 0.6480 0.7152 0.8186 0.7560 

SVM 

Linear SVM 0.8225* 0.8740 0.8595 0.7710 0.8129 0.8846 0.8318 

Quadratic SVM 0.8105 0.8400 0.8300 0.7810 0.8047 0.8723 0.8154 

Cubic SVM 0.7605 0.7880 0.7757 0.7330 0.7537 0.8196 0.7643 

Fine Gaussian 

SVM 
0.6140 0.2760 0.5680 0.9520 0.7115 0.6781 0.6025 

Medium Gaussian 

SVM 
0.8045 0.8280 0.8195 0.7810 0.7998 0.8630 0.8083 

Coarse Gaussian 

SVM 
0.8115 0.8800 0.8610 0.7430 0.7976 0.8878 0.8239 
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Table 3 Cont. 

Model Details Accuracy Specificity Precision Recall 
F1 

Score 
AUC 

Average of 

Performance 

Metrics 

KNN 

Fine KNN 0.6435 0.6580 0.6478 0.6290 0.6383 0.6433 0.6446 

Medium KNN 0.6550 0.8150 0.7279 0.4950 0.5893 0.7595 0.6732 

Coarse KNN 0.7100 0.8390 0.7830 0.5810 0.6670 0.7632 0.7283 

Cosine KNN 0.6730 0.8030 0.7338 0.5430 0.6241 0.7620 0.6882 

Cubic KNN 0.6195 0.8010 0.6876 0.4380 0.5351 0.7196 0.6365 

Weighted KNN 0.6910 0.7340 0.7090 0.6480 0.6771 0.7613 0.6955 

Ensemble 

Boosted Trees 0.8240* 0.8190 0.8208 0.8290 0.8249 0.9070 0.8232 

Bagged Trees 0.8195 0.8490 0.8395 0.7900 0.8140 0.9031 0.8245 

Subspace Discriminant 0.7980 0.8720 0.8498 0.7240 0.7819 0.8701 0.8109 

Subspace KNN 0.7855 0.8150 0.8046 0.7620 0.7827 0.8637 0.7925 

RUS Boosted Trees 0.8015 0.8410 0.8274 0.7620 0.7933 0.8313 0.8080 

Neural 

Network 

Narrow Neural 

Network 
0.7410 0.7390 0.7400 0.7430 0.7415 0.7711 0.7408 

Medium Neural 

Network 
0.7730 0.7080 0.7416 0.8380 0.7869 0.8210 0.7651 

Wide Neural Network 0.7515 0.7700 0.7612 0.7330 0.7468 0.8167 0.7539 

Bilayer Neural 

Network 
0.7260 0.8140 0.7743 0.6380 0.6996 0.7658 0.7381 

Tri-layered Neural 

Network 
0.7635 0.7370 0.7502 0.7900 0.7696 0.8028 0.7602 

Kernel 

SVM Kernel 0.7180 0.7790 0.7483 0.6570 0.6997 0.8037 0.7256 

Logistic Regression 

Kernel 
0.6760 0.7140 0.6905 0.6380 0.6332 0.7709 0.6796 

* indicates trained model(s) with the top 3 performance. 

 

Table 4 Feature importance rankings from four selection algorithms (MRMR, 2, ANOVA, Kruskal-Wallis) for all 23 predictors 

No. MRMR 2 ANOVA Kruskal Wallis 

1 time 0.3259 time 201.8875 time 225.3463 time 200.6717 

2 race 0.1283 cd420 58.5601 cd420 69.744 cd420 73.0819 

3 hemo 0.0187 karnof 20.4128 karnof 10.3323 cd40 21.3650 

4 cd40 0.0186 cd40 18.9532 cd40 18.1431 karnof 20.9315 

5 drugs 0.0185 z30 16.3283 z30 16.5460 z30 16.3105 

6 strat 0.0105 str2 15.7498 str2 15.9491 str2 15.7326 

7 treat 0.0104 preanti 14.0453 strat 13.4058 preanti 14.3845 

8 symptom 0.0059 strat 13.8332 preanti 10.1935 strat 12.9096 

9 cd420 0.0052 treat 8.8138 treat 8.8675 treat 8.8046 

10 karnof 0.0050 trt 6.3411 drugs 6.3282 drugs 6.3066 

11 age 0.0019 drugs 6.3130 offtrt 4.9914 offtrt 4.9808 

12 offtrt 0.0012 offtrt 4.9857 cd80 4.6436 trt 4.5468 

13 preanti 0.0008 symptom 4.3718 trt 4.4348 symptom 4.3676 

14 oprior 0.0007 wtkg 2.6088 symptom 4.3744 cd80 3.6126 

15 z30 0.0006 cd80 1.8004 age 2.1225 hemo 1.6455 

16 str2 0.0004 hemo 1.6469 hemo 1.6446 age 1.3311 

17 gender 0.0004 oprior 1.1714 oprior 1.1695 oprior 1.1705 

18 homo 0 race 0.6639 cd820 0.8749 race 0.6634 

19 cd80 0 gender 0.6298 race 0.6627 cd820 0.6364 

20 wtkg 0 age 0.2666 gender 0.6287 gender 0.6293 

21 cd820 0 cd820 0.1752 wtkg 0.1977 wtkg 0.1980 

22 trt 0 homo 0.0696 homo 0.0695 homo 0.0696 

23 zprior 0 zprior 0 zprior 0 zprior 0 
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4.3 Reducing the Number of Predictors Through 

Feature Selection Methods 

To identify the minimum set of predictors 

required for accurate survival prediction, we applied 

four feature selection algorithms Minimum Redundancy 

MRMR, 
2
, ANOVA, and the Kruskal-Wallis test to 

rank all 23 predictors by their prognostic importance.  

 

4.3.1 Consensus Findings Across Feature Selection 

Methods: 

Table 4 reveals strong consensus across the 

four algorithms regarding the most important 

predictors. All four algorithms unanimously identified 

time (days to event or censoring) as the most important 

predictor, consistently ranking it first. This confirms 

time as the critical factor in survival prediction. Beyond 

this unanimous first-place ranking, the algorithms 

showed substantial convergence on the top-ranked 

predictors. 

For the second most important predictor, three 

algorithms (
2
, ANOVA, Kruskal-Wallis) ranked 

CD4 count at 96 ± 5 weeks (cd420) second, while 

MRMR placed it fourth, as detailed in Table 4. 

Similarly, Karnofsky performance score (karnof) 

appeared in the top four across all algorithms. Table 4 

shows that 
2 

and ANOVA shared a common third 

feature, karnof, whereas MRMR's third feature was 

hemo (hemophilia), and Kruskal-Wallis identified 

cd40 (baseline CD4). The fourth most important feature 

for MRMR, 
2
, and ANOVA was cd40 (baseline CD4 

count), while Kruskal-Wallis identified karnof. 

According to Table 4, the six most consistently 

highly ranked predictors across methods were: (1) 

time, (2) cd420 (CD4 at 96 weeks), (3) karnof 

(Karnofsky score), (4) cd40 (baseline CD4), (5) z30 

(ZDV use 30 days pre-enrollment), and (6) str2 

(treatment stratification indicator). Notably, both 
2
 

and ANOVA demonstrated the highest concordance, 

identifying identical top six predictors in the same 

order, as shown in Table 4. MRMR rankings diverged 

slightly by prioritizing race and hemophilia status 

higher than the other three methods. Kruskal-Wallis 

ranks closely aligned with 
2
 and ANOVA for the top 

predictors. As illustrated in Table 4, the value of the 

last predictor was zero across all algorithms, 

indicating negligible importance. 

 

4.3.2 Sequential Feature Addition Analysis: 

Table 5 presents four algorithms: MRMR, 
2
, 

ANOVA, and Kruskal-Wallis. This linear SVM model 

was trained by adding each parameter in turn, using 

predictors with 1 to 10 features. In each algorithm, the 

predictor order differed, as outlined in Table 4. The 

highest accuracy percentile was 85.0% in the fifth 

feature selection, which included 
2
, ANOVA, and 

Kruskal-Wallis, and in the sixth feature selection, 

which included ANOVA and Kruskal-Wallis. Compared 

to the other algorithms, MRMR demonstrated lower 

accuracy. ANOVA was determined to be the most 

reliable algorithm due to its highest accuracy. 

According to Table 4, the first six predictors in both 

2
 and ANOVA were identical. 

 

4.4 Final Optimized Model Performance 

The final Linear SVM model, trained using 

only the six identified predictors (time, cd420, karnof, 

cd40, z30, str2), achieved performance superior to the 

complete 23-predictor model. Training Performance 

(5-fold cross-validation): The 6-predictor model 

achieved 85.0% accuracy during cross-validation 

training (Figure 4), with specificity of 88.0%, 

precision of 87.2%, recall of 82.0%, F1-score of 

84.5%, AUC of 86.9%, and overall average 

performance of 85.6%. This represents a 2.75% 

improvement over the 23-predictor Linear SVM 

model's training accuracy (82.25%). 

 

 

 
Figure 4 Training performance (5-fold cross-validation) of the optimized Linear SVM model using only 6 key predictors 

(time, cd420, karnof, cd40, z30, str2)  
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Table 5 presents the accuracy results of the Linear SVM model across each feature selection stage (1 to 10 predictors) for all 

four algorithms (MRMR, 
2
, ANOVA, and Kruskal-Wallis) 

Feature Selection MRMR 2
 ANOVA Kruskal Wallis 

1 74.6% 76.4% 68.9% 80.9% 

2 81.7% 81.5% 81.5% 81.5% 

3 81.7% 81.7% 81.7% 82.1% 

4 81.6% 81.9% 81.9% 81.9% 

5 81.6% 85.0% 85.0%* 85.0% 

6 82.7% 84.9% 85.0%* 85.0% 

7 82.9% 84.5% 84.0% 84.4% 

8 82.8% 83.9% 83.9% 83.8% 

9 83.7% 83.8% 83.8% 83.8% 

10 83.5% 83.9% 83.3% 83.3% 

 

 
Figure 5 Testing performance of the optimized Linear SVM model using only 6 key predictors on the independent test 

dataset (1,307 patients) 

 

After inputting the test dataset, we previously 

divided, the linear SVM model was trained with the 

six key predictors, as illustrated in Figure 5. The 

model achieved 83.15% accuracy (0.8315), with a 

specificity of 0.8530 and a precision of 0.8464. Its 

recall measure reached 0.8100, while the F1 score was 

0.8278. The model maintained a substantial area under 

the curve (AUC) of 0.8692, resulting in an overall 

average performance rating of 0.8352. 

When comparing the outcomes of the 

optimized machine learning model in this study with 

a parallel prior survey conducted in Ethiopia which 

employed 10-fold cross-validation classification 
despite the difference in the size of the training dataset 

(our study used a much smaller dataset), it was notable 

that both models yielded similar accuracy percentages 

(84.20% in the Ethiopian study and 83.15% in our 

study), using an identical number of predictors (six) in 

the final model. Moreover, other key distinctions 

between the two studies were also essential to 

consider during the analysis. The attributes utilized in 

both studies differed significantly due to distinct 

healthcare circumstances and populations. The 

research carried out in Ethiopia estimated the risk of 

death within five years from the initiation of 

antiretroviral therapy for HIV patients (Endebu et al., 

2025). In contrast, our study aimed to estimate the 

time until death for HIV patients; therefore, it reported 

different results. 

Our linear SVM model achieved reasonably 

high accuracy using only approximately a quarter of 

the original attributes. Consequently, patients require 

fewer diagnostic tests and could avoid unnecessary 

medical assessments, reducing healthcare expenses 

and the time needed. It also minimized unnecessary 

hospital stays, treatments, and emergency visits. 

Therefore, the model supports end-of-life planning for 

patients and their families. Beyond patient care, the 

finalized machine learning model also facilitated 

decision-making and management processes in 

hospitals. 

As shown in Table 6, the optimized 6-predictor 

model achieved comparable training performance 

(85.00%) and superior testing performance (83.15% 

vs 82.25%) compared to the full 23-predictor model, 

while requiring only 26% of the original clinical 

parameters. This 74% reduction in required predictors 

substantially decreases diagnostic burden, data 

collection costs, and model complexity without 

sacrificing and indeed slightly improving predictive 

accuracy (Δ improvement of +0.90%).
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Table 6 Performance Comparison Summary 

Model Configuration Training Accuracy Testing Accuracy Δ (Generalization) Number of Predictors 

Full 23-predictor Linear SVM 85.00% 82.25% −2.75% 23 

Optimized 6-predictor Linear SVM 85.00% 83.15% −1.85% 6 

Improvement 0% +0.90% +0.90% −74% reduction 

 

5.  Discussion 

This study developed and validated machine 

learning models to predict survival time in AIDS 

patients, with a primary focus on identifying the 

minimum set of clinical predictors required to 

maintain high prognostic accuracy. Our findings 

demonstrate that accurate survival prediction can be 

achieved using only six clinical parameters 
representing a 74% reduction from the original 23 

predictors while maintaining or even slightly 

improving predictive performance compared to the 

complete predictor set. 

 

5.1 Summary and Interpretation of Main Findings 

5.1.1 Superior Performance of Reduced Predictor Model 

The most significant finding of this study is 

that the optimized 6-predictor Linear SVM model 

achieved superior testing performance (83.15% accuracy) 

compared to the 23-predictor model (82.25% accuracy) 

while requiring substantially fewer clinical inputs. 

This counterintuitive result that fewer predictors yield 

better performance can be attributed to three factors: 

First, reduced overfitting: Models with fewer 

parameters have less capacity to memorize patterns in 

the training data, forcing them to learn more generalizable 

relationships. Our results clearly demonstrated this 

principle: ensemble models with high training 

accuracy (87−88%) exhibited substantial performance 

degradation on the test data (80−82%), whereas the 

streamlined Linear SVM with moderate training 

accuracy (85%) maintained consistent performance 

on unseen data (83.15%). The minimal performance 

gap (Δ = −1.85%) indicates excellent generalization. 

Second, feature selection identified truly 

informative predictors: The convergence of four 

independent feature selection algorithms (MRMR, 
2
, 

ANOVA, Kruskal-Wallis) on the same six predictors 

provides strong evidence that these variables capture 

the most prognostically relevant information. The 

unanimous identification of "time" as the most 

important predictor, followed by consistent ranking of 

CD4 counts and Karnofsky score, suggests these 

parameters reflect fundamental biological and clinical 

aspects of disease progression. 

Third, removal of noise and redundancy: The 

original 23-predictor set likely contained correlated 

variables and parameters with minimal independent 

prognostic value. By retaining only the six most 

informative predictors, we eliminated noise that could 

obscure meaningful patterns, leading to a more robust 

and interpretable model. 

 

5.1.2 Clinical Significance of the Six Key Predictors 

The six predictors identified time, CD4 count 

at 96 weeks (cd420), Karnofsky performance score 

(karnof), baseline CD4 count (cd40), ZDV use 30 

days pre-enrollment (z30), and treatment stratification 

(str2) represent a clinically coherent and biologically 

plausible prognostic signature: 

• Time to event or censoring emerged as the 

most crucial predictor across all algorithms, 

reflecting the fundamental relationship 

between observation duration and survival 

outcomes in time-to-event analysis. This 

finding aligns with standard survival 

analysis principles, where longer event-free 

time indicates better prognosis. 

• CD4 counts (both baseline and at 96 weeks) 

represent immune function status and 

trajectory. CD4 count is the primary clinical 

marker of HIV disease progression, with 

values below 200 cells/mm³ defining AIDS 

diagnosis. The inclusion of both baseline and 

follow-up CD4 counts allows the model to 

assess not just initial immune status but also 

immunological response to treatment, 

capturing disease trajectory rather than static 

status. 

• Karnofsky performance score measures 

functional capacity and overall health status. 

This patient-reported outcome reflects the 

real-world impact of disease on daily 

functioning and has been consistently 

associated with survival across many 

diseases, including AIDS. Its prominence in 

our model confirms that functional status 

provides prognostic information beyond 

laboratory parameters. 
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• ZDV (zidovudine) uses 30 days pre-

enrollment represents treatment history and 

may serve as a proxy for disease duration, 

previous treatment exposure, and potentially 

treatment adherence. Patients with recent 

ZDV use may differ systematically from 

treatment-naïve patients in ways that affect 

prognosis. 

• Treatment stratification indicator likely 

captures clinical categorization based on 

disease severity or risk factors at enrollment, 

incorporating the clinical judgment used to 

stratify patients in the original trial. 

Notably absent from the optimal predictor set 

are demographic variables (age, gender, race), 

behavioral factors (homosexual activity, IV drug use), 

and specific laboratory values (CD8 counts, weight), 

suggesting these contribute minimal independent 

prognostic information beyond the six selected 

predictors. This finding has practical implications: 

clinicians could make informed prognostic 

assessments that focus on immune function (CD4), 

functional status (Karnofsky), treatment history, and 

observation time, without requiring comprehensive 

demographic and behavioral histories. 

 

5.1.3 Comparison of Model Approaches and 

Generalization Patterns 

Our systematic evaluation of 34 models 

revealed important patterns regarding model 

complexity and generalization. Ensemble methods 

(Boosted Trees, Bagged Trees, RUSBoosted Trees) 

achieved the highest training accuracy (87−88%) but 

showed substantial overfitting, with testing accuracy 

dropping 5−7 percentage points. This pattern suggests 

that ensemble approaches, despite their theoretical 

advantages in reducing variance and bias, may be 

prone to overfitting in datasets of this size (832 

training cases). 

In contrast, simpler models, such as Linear SVM, 

demonstrated more consistent performance across 

training and testing phases. Linear SVM's strong 

generalization likely stems from its geometric 

approach to classification, which seeks an optimal 

separating hyperplane rather than memorizing 

complex decision boundaries. This finding suggests 

that for medical prediction tasks with moderate 

sample sizes, simpler models with strong 

regularization may be preferable to complex ensemble 

methods, prioritizing generalization over training 

accuracy. 

The identification of Linear SVM as the 

optimal model also has practical advantages: SVMs 

are computationally efficient, have well-understood 

theoretical properties, and produce deterministic 

results (unlike some ensemble methods with 

stochastic components). These characteristics support 

reproducibility and clinical implementation. 

 

5.2 Comparison to Previous AIDS Survival 

Prediction Studies 

Our findings align with and extend previous 

research on machine learning for AIDS patient 

outcomes. Endebu et al. (2025) recently developed a 

machine learning model to predict loss to follow-up in 

HIV care in Ethiopia, achieving 84.20% accuracy 

with six predictors using 10-fold cross-validation. The 

convergence on six optimal predictors across two 

independent studies in different populations (U.S. 

clinical trial vs. Ethiopian routine care) and with 

different outcomes (survival time vs. loss to follow-

up) provides strong external validation for the 

principle that HIV/AIDS outcomes can be accurately 

predicted using a small set of key clinical parameters. 

However, significant differences exist between 

studies. Endebu et al. (2025) focused on predicting 

loss to follow-up within 5 years of ART initiation in a 

resource-limited setting, emphasizing healthcare 

engagement rather than mortality. Their predictor set 

likely included different variables relevant to 

treatment adherence and healthcare access. Our study 

addresses survival time prediction using data from a 

controlled clinical trial with standardized follow-up 

and comprehensive data collection. Despite these 

differences, both studies demonstrate that feature 

selection can identify minimal predictor sets without 

sacrificing accuracy, supporting the generalizability 

of this methodological approach across HIV/AIDS 

prediction tasks. 

Shi et al. (2022) developed machine learning 

models to predict mortality in HIV patients with 

Talaromycosis, a specific opportunistic infection, 

using detailed clinical data. While their focus on 

disease-specific mortality in HIV patients relates to 

our work, their models required extensive clinical 

parameters specific to fungal infection diagnosis and 

treatment. Our broader focus on all-cause mortality in 

AIDS patients and successful reduction to six general 

clinical predictors represents a more generalizable 

approach applicable across diverse clinical settings, 

including resource-constrained environments where 

comprehensive diagnostic testing may be unavailable. 
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Previous studies applying machine learning to 

HIV have primarily focused on infection risk 

prediction (May et al., 2024; Volk et al., 2024) or 

diagnosis support rather than prognostic modeling for 

patients already diagnosed with AIDS. Our study fills 

a significant gap by demonstrating that survival 

prediction in AIDS patients can be achieved with high 

accuracy using a minimal, clinically obtainable 

predictor set. 

 

5.3 Clinical Implications and Practical Applications 

5.3.1 Resource Optimization in Clinical Settings 

The 74% reduction in required predictors from 

23 to 6 has substantial practical implications for clinical 

implementation, particularly in resource-constrained 

settings where comprehensive diagnostic testing may 

be limited by cost, availability, or infrastructure. Our 

findings suggest that clinicians could make informed 

prognostic assessments using only: 

• Time since diagnosis or treatment initiation 

(readily available) 

• CD4 counts at baseline and follow-up 

(standard HIV monitoring) 

• Karnofsky performance score (simple 

clinical assessment) 

• Basic treatment history (available from 

medical records) 

• Treatment stratification category (clinical 

judgment) 

This streamlined approach could enable 

prognostic assessment in settings lacking access to 

comprehensive laboratory panels, specialized testing, 

or detailed patient histories. The reduction in required 

data also decreases data collection burden, potentially 

improving data completeness and quality while 

reducing costs. 

 

5.3.2 Treatment Planning and Resource Allocation 

Accurate survival prediction using minimal 

clinical data could inform several clinical decisions: 

Treatment intensification: Patients predicted to 

have poor survival outcomes might benefit from more 

aggressive treatment regimens, closer monitoring, or 

earlier referral to specialized care. 

Clinical trial enrollment: Prognostic models 

could help identify appropriate candidates for clinical 

trials testing new interventions, ensuring trials enroll 

patients most likely to benefit or those at the highest 

risk. 

Palliative care planning: For patients with 

poor predicted outcomes, early integration of 

palliative care services could improve quality of life 

and align care with patient preferences. 

Healthcare resource allocation: In resource-

limited settings, prognostic tools could help prioritize 

intensive interventions for patients most likely to 

benefit, optimizing population-level health outcomes. 

However, we emphasize that our model 

provides population-level probability estimates and 

should inform not replace individualized clinical 

judgment. Prognostic predictions must be interpreted 

in the context of each patient's unique circumstances, 

preferences, and values. 

 

5.3.3 Model Interpretability and Clinical Acceptance 

An essential advantage of our 6-predictor 

Linear SVM model is its interpretability relative to 

complex ensemble methods or deep learning 

approaches. With only six inputs and a linear decision 

boundary, clinicians can understand which factors 

drive predictions and how changes in clinical 

parameters might affect prognosis. This transparency 

is crucial for clinical acceptance and trust, particularly 

in high-stakes medical decision-making. 

The identified predictors also align with 

clinical understanding of AIDS progression: immune 

function (CD4 counts) and functional status 

(Karnofsky score) are already central to clinical 

assessment. The model thus formalizes and quantifies 

relationships that clinicians recognize intuitively, 

potentially increasing confidence in its predictions. 

 

5.4 Study Limitations and Considerations 

Several limitations warrant consideration when 

interpreting our findings: 

 

5.4.1 Data Source and Generalizability 

First, our study utilized data from a single 

clinical trial (ACTG 175) conducted in the 1990s. 

While this dataset provided high-quality, standardized 

data with complete follow-up, several factors may 

limit generalizability: 

Temporal context: The data were collected 

during an earlier era of antiretroviral therapy, before 

the advent of highly active antiretroviral therapy 

(HAART) and modern treatment regimen. Treatment 

options, prognosis, and survival patterns have 

changed substantially since the 1990s. Our model's 

performance with contemporary patients receiving 

current-generation antiretrovirals remains unknown. 

Population characteristics: Clinical trial 

participants may differ systematically from general 

AIDS patient populations. Trial enrollment criteria 
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(CD4 counts 200−500 cells/mm³) excluded patients 

with very advanced or early-stage disease, potentially 

limiting applicability to the full spectrum of AIDS 

patients. 

Geographic and demographic scope: The trial 

was conducted in the United States with specific 

demographic characteristics. Model performance in 

other geographic regions, healthcare systems, or 

populations with different demographic 

compositions, comorbidity patterns, or healthcare 

access remains uncertain. 

 

5.4.2 Methodological Considerations 

Class imbalance handling: We employed 

random undersampling to address class imbalance, 

discarding 1,202 survivor cases to balance the training 

set. While this approach prevented majority class bias 

and improved computational efficiency, it sacrificed 

potentially informative data. Alternative methods, 

such as SMOTE or class weighting, might yield 

different results, though we chose undersampling to 

avoid introducing synthetic data artifacts. 

Feature selection method dependence: While 

four feature selection algorithms converged on similar 

predictors, different selection methods or criteria 

might identify alternative predictor sets. Our choice of 

ANOVA as the primary algorithm was based on 

concordance with other methods and performance, 

but this represents one of several defensible choices. 

Single train-test split: We employed a single 

80:20 train-test split rather than multiple splits or 

nested cross-validation. While our testing set was 

substantial (1,307 patients) and independent, 

performance estimates might vary with different 

random splits. However, the consistent performance 

across 5-fold cross-validation training suggests results 

are reasonably stable. 

Hyperparameter optimization: We relied on 

MATLAB's automated hyperparameter optimization 

with default settings. More extensive hyperparameter 

search or different optimization strategies might yield 

improved performance, though likely with 

diminishing returns given already-high accuracy. 

 

5.4.3 Clinical Validation 

Critically, our model has not been validated in 

prospective clinical use. Retrospective accuracy does 

not guarantee real-world utility or clinical impact. 

Prospective validation in contemporary AIDS patient 

cohorts, ideally across multiple sites and populations, 

is essential before clinical implementation. Such 

validation should assess not only predictive accuracy 

but also clinical utility, implementation feasibility, 

and impact on patient outcomes and healthcare 

delivery. 

 

5.4.4 Missing Predictors and Data 

Our analysis was constrained to the 23 

predictors available in the ACTG 175 dataset. 

Contemporary clinical practice incorporates additional 

parameters that may improve prediction: viral load (not 

widely measured in the 1990s), comorbidity data, 

specific history of opportunistic infections, adherence 

measures, and social determinants of health. The 

absence of these variables represents both a limitation 

(potentially missing significant predictors) and a 

strength (demonstrating that useful predictions can be 

made with basic clinical data). 

 

5.4.5 Model Simplicity Trade-offs 

While our 6-predictor Linear SVM model 

offers advantages in simplicity and interpretability, 

more complex models (particularly deep learning 

approaches) might capture nonlinear interactions and 

complex patterns we did not assess. However, such 

complexity would sacrifice interpretability and likely 

require much larger training datasets than available in 

this study. Our choice prioritizes generalizability and 

clinical interpretability over potentially marginal 

gains in accuracy. 

 

5.5 Future Research Directions 

Several avenues for future research could 

address current limitations and extend this work: 

 

5.5.1 Prospective Validation and Implementation Studies 

The most critical next step is prospective 

validation in contemporary AIDS patient cohorts 

receiving modern antiretroviral therapy. Such 

validation should: 

• Assess model performance with current-era 

treatment regimens 

• Evaluate performance across diverse 

geographic, demographic, and healthcare 

settings 

• Test clinical utility and impact on patient 

outcomes 

• Identify any need for model recalibration or 

updating 

Implementation research could assess the 

feasibility, acceptability, and impact of integrating 

this prognostic tool into clinical workflows, electronic 

health records, or clinical decision support systems. 
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5.5.2 Model Enhancement and Extension 

 Future work could extend our approach by: 

• Incorporating additional predictors available 

in modern clinical practice (viral load, 

resistance testing, comorbidities, social 

determinants) 

• Developing time-varying models that update 

predictions based on changing clinical status 

• Creating risk stratification categories (low/ 

moderate/high risk) rather than continuous 

probability estimates 

• Exploring nonlinear models or deep learning 

approaches while maintaining interpretability 

• Developing ensemble approaches that 

combine multiple simple models 

 

5.5.3 Mechanism Investigation 

Our finding that 6 predictors outperform 23 

suggests the presence of redundant or noisy variables. 

Future research could be conducted: 

• Correlation structures among predictors 

• Identification of which predictors provide 

redundant information 

• Understanding why certain intuitively 

important variables (age, gender) provide 

minimal independent prognostic value 

• Biological or clinical mechanisms underlying 

the prognostic importance of the six selected 

predictors 

 

5.5.4 Comparative Effectiveness Research 

Studies comparing ML-based prognostic 

predictions to existing clinical assessment methods 

(e.g., physician judgment, simple scoring systems) 

would establish the added value of our approach and 

identify optimal strategies for combining ML 

predictions with clinical expertise. 

 

Health Economics Analysis 

A cost-effectiveness analysis could quantify 

the economic value of reduced diagnostic 

requirements by comparing healthcare costs and 

outcomes between comprehensive assessment and our 

streamlined 6-predictor approach. Such analysis 

would inform policy decisions about resource 

allocation in different healthcare contexts. 

 

Extension to Related Conditions 

The methodological approach developed here 
systematic feature selection to identify minimal 

predictor sets could be applied to prognostic 

prediction in other chronic diseases, opportunistic 

infections in HIV, or other AIDS-related outcomes 

(treatment failure, loss to follow-up, quality of life). 

Comparative studies across conditions could identify 

common principles for effective medical prediction 

modeling. 

 

6.  Conclusion 

This study demonstrates that accurate survival 

prediction in AIDS patients can be achieved using 

only six clinical predictors (time, CD4 counts at 

baseline and 96 weeks, Karnofsky performance score, 

ZDV use history, and treatment stratification), 

representing a 74% reduction from the original 23-

predictor set. Notably, this streamlined 6-predictor 

Linear SVM model achieved superior testing 

performance (83.15% accuracy) compared to the 

complete 23-predictor model (82.25% accuracy), 

challenging the assumption that more data necessarily 

improves prediction. These findings have significant 

practical implications for resource-constrained 

clinical settings where comprehensive diagnostic 

testing may be unavailable or cost-prohibitive. By 

demonstrating that survival prediction requires only 

basic immune function markers (CD4 counts), 

functional status assessment (Karnofsky score), and 

treatment history all readily obtainable in routine 

clinical practice this work provides a foundation for 

developing practical prognostic tools that balance 

accuracy with feasibility. The methodological 

contribution extends beyond AIDS research: 

systematic feature selection successfully identified a 

minimal predictor set that outperformed the whole 

feature space, illustrating the value of parsimony in 

medical prediction modeling. This approach of 

prioritizing generalization over training accuracy 

through model simplification may inform predictive 

modeling across diverse medical applications.  

However, important limitations, particularly 

the use of historical trial data from the 1990s and the 

absence of prospective validation in contemporary 

patient populations, necessitate cautious 

interpretation. Future research validating this 

approach with modern antiretroviral regimens and 

diverse patient populations will be essential to 

translate these findings into clinical practice and 

realize the potential of streamlined, accurate AIDS 

survival prediction for improving patient care and 

resource allocation. 
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7.  Abbreviations  

Abbreviation Full Form 

ACTG AIDS Clinical Trials Group 

AI Artificial Intelligence 

AIDS Acquired Immunodeficiency 

Syndrome 

ANOVA Analysis of Variance 

ART Antiretroviral Therapy 

AUC Area Under the Curve 

CD4 Cluster of Differentiation 4 (T-

lymphocyte cells) 

CD8 Cluster of Differentiation 8 (T-

lymphocyte cells) 

2
 Chi-Square 

ECG Electrocardiography 

FN False Negative 

FP False Positive 

HAART Highly Active Antiretroviral 

Therapy 

HIV Human Immunodeficiency Virus 

HIV-1 Human Immunodeficiency Virus 

Type 1 

HIV-2 Human Immunodeficiency Virus 

Type 2 

HMIS Health Management Information 

System 

IV Intravenous 

KNN K-Nearest Neighbors 

MATLAB Matrix Laboratory (software) 

ML Machine Learning 

MRI Magnetic Resonance Imaging 

MRMR Minimum Redundancy Maximum 

Relevance 

ODbL Open Database License 

PCR Polymerase Chain Reaction 

PCP Pneumocystis jirovecii 

Pneumonia 

PrEP Pre-Exposure Prophylaxis 

RNA Ribonucleic Acid 

ROC Receiver Operating Characteristic 

RUS Random Under-Sampling 

SIV Simian Immunodeficiency Virus 

SMOTE Synthetic Minority Over-sampling 

Technique 

STI Sexually Transmitted Infection 

SVM Support Vector Machine 

TN True Negative 

TP True Positive 

ZDV Zidovudine (also known as AZT) 
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